• Title/Summary/Keyword: Weighted score method

Search Result 90, Processing Time 0.026 seconds

RadioCycle: Deep Dual Learning based Radio Map Estimation

  • Zheng, Yi;Zhang, Tianqian;Liao, Cunyi;Wang, Ji;Liu, Shouyin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3780-3797
    • /
    • 2022
  • The estimation of radio map (RM) is a fundamental and critical task for the network planning and optimization performance of mobile communication. In this paper, a RM estimation method is proposed based on a deep dual learning structure. This method can simultaneously and accurately reconstruct the urban building map (UBM) and estimate the RM of the whole cell by only part of the measured reference signal receiving power (RSRP). Our proposed method implements UBM reconstruction task and RM estimation task by constructing a dual U-Net-based structure, which is named RadioCycle. RadioCycle jointly trains two symmetric generators of the dual structure. Further, to solve the problem of interference negative transfer in generators trained jointly for two different tasks, RadioCycle introduces a dynamic weighted averaging method to dynamically balance the learning rate of these two generators in the joint training. Eventually, the experiments demonstrate that on the UBM reconstruction task, RadioCycle achieves an F1 score of 0.950, and on the RM estimation task, RadioCycle achieves a root mean square error of 0.069. Therefore, RadioCycle can estimate both the RM and the UBM in a cell with measured RSRP for only 20% of the whole cell.

Multi-Modal Biometrics Recognition Method of Face Recognition using Fuzzy-EBGM and Iris Recognition using Fuzzy LDA (Fuzzy-EBGM을 이용한 얼굴인식과 Fuzzy-LDA를 이용한 홍채인식의 다중생체인식 기법 연구)

  • Go Hyoun-Joo;Kwon Mann-Jun;Chun Myung-Ceun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.299-301
    • /
    • 2005
  • 본 연구는 생체정보를 이용하여 개인을 인증하고 확인하기 위한 방법으로 기존 단일 생체인식 기법의 단점을 보완하기 위해 홍채와 얼굴을 이용한 다중생체인식(Multi-Modal Biometrics Recognition)기법을 연구하였다. 중국 홍채 데이터베이스 CASIA(Chinese Academy of Science)에 Gabor Wavelet과 FLDA(Fuzzy Linear Discriminant Analysis)를 사용하여 특징벡터를 획득하였으며, FERET(FERET(Face Recognition Technology) 얼굴영상데이터를 사용하여 FERET 연구에서 매우 우수한 성능을 보인 EBGM알고리듬으로 특징벡터를 획득하였다. 이로부터 얻어진 두 score 값에 대하여 다양한 균등화 과정을 시도해 보았으며, 등록자와 침입자를 구분하기 위한 Fusion Algorithm으로 Bayesian Classifier, Support vector machine, Fisher's linear discriminant를 사용하였다. 또한, 널리 사용되는 방법 중 Weighted Summation을 이용하여 다중생체인식의 성능을 비교해 보았다.

  • PDF

Emotion Recognition based on Multiple Modalities

  • Kim, Dong-Ju;Lee, Hyeon-Gu;Hong, Kwang-Seok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.228-236
    • /
    • 2011
  • Emotion recognition plays an important role in the research area of human-computer interaction, and it allows a more natural and more human-like communication between humans and computer. Most of previous work on emotion recognition focused on extracting emotions from face, speech or EEG information separately. Therefore, a novel approach is presented in this paper, including face, speech and EEG, to recognize the human emotion. The individual matching scores obtained from face, speech, and EEG are combined using a weighted-summation operation, and the fused-score is utilized to classify the human emotion. In the experiment results, the proposed approach gives an improvement of more than 18.64% when compared to the most successful unimodal approach, and also provides better performance compared to approaches integrating two modalities each other. From these results, we confirmed that the proposed approach achieved a significant performance improvement and the proposed method was very effective.

The Process and Method to Set a Mountainous Scenic Site's Designated Area

  • Han, Gab Soo;Kim, Soonki;Ham, Kwang Min
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.1
    • /
    • pp.47-54
    • /
    • 2020
  • A "Scenic Site" is an official heritage category legally defined as a "scenic site of outstanding artistic value with excellent scenic views." However, the subjective interpretation of the term causes several problems. This study suggested a systematic, organized process of designating a listed area as a scenic site after careful and detailed quantitative and qualitative analysis. Indicators were identified for each of the two analyses, and then scored and weighted. Quantitative indicators were distributed within 5 points for each indicator. Water, which is a natural indicator, based on distance from river boundaries. Forest landscapes were assigned in consideration of forest physiognomy and age class. Land use was allocated in consideration of land cover type and, in case of development site, '-' score was assigned. Cultural heritage conservation area, which is historical and cultural indicator, was distributed by distance within a maximum of 500 meters. Visibility, an indicator of landscape value, was assigned according to the frequency of visibility. The weight of each indicator was calculated by considering the value of each item. The weight of distribution of cultural resources is relatively high, while other items were set the same. In case of land use, however, '-' score was given according to the grade. Qualitative indicators, on the other hand, were considered terrain, landscape zone, ownership, intellectual boundary, and land category. The applicability of the proposed process and method was examined by applying the existing methods and criteria used for designating scenic spots. Opinions of subject-matter experts were incorporated in the identification of the indicators and in the result review stage. In the future, it is necessary to apply this method while designating scenic sites so as to establish an objective, scientific designation process.

Feasibility of a Clinical-Radiomics Model to Predict the Outcomes of Acute Ischemic Stroke

  • Yiran Zhou;Di Wu;Su Yan;Yan Xie;Shun Zhang;Wenzhi Lv;Yuanyuan Qin;Yufei Liu;Chengxia Liu;Jun Lu;Jia Li;Hongquan Zhu;Weiyin Vivian Liu;Huan Liu;Guiling Zhang;Wenzhen Zhu
    • Korean Journal of Radiology
    • /
    • v.23 no.8
    • /
    • pp.811-820
    • /
    • 2022
  • Objective: To develop a model incorporating radiomic features and clinical factors to accurately predict acute ischemic stroke (AIS) outcomes. Materials and Methods: Data from 522 AIS patients (382 male [73.2%]; mean age ± standard deviation, 58.9 ± 11.5 years) were randomly divided into the training (n = 311) and validation cohorts (n = 211). According to the modified Rankin Scale (mRS) at 6 months after hospital discharge, prognosis was dichotomized into good (mRS ≤ 2) and poor (mRS > 2); 1310 radiomics features were extracted from diffusion-weighted imaging and apparent diffusion coefficient maps. The minimum redundancy maximum relevance algorithm and the least absolute shrinkage and selection operator logistic regression method were implemented to select the features and establish a radiomics model. Univariable and multivariable logistic regression analyses were performed to identify the clinical factors and construct a clinical model. Ultimately, a multivariable logistic regression analysis incorporating independent clinical factors and radiomics score was implemented to establish the final combined prediction model using a backward step-down selection procedure, and a clinical-radiomics nomogram was developed. The models were evaluated using calibration, receiver operating characteristic (ROC), and decision curve analyses. Results: Age, sex, stroke history, diabetes, baseline mRS, baseline National Institutes of Health Stroke Scale score, and radiomics score were independent predictors of AIS outcomes. The area under the ROC curve of the clinical-radiomics model was 0.868 (95% confidence interval, 0.825-0.910) in the training cohort and 0.890 (0.844-0.936) in the validation cohort, which was significantly larger than that of the clinical or radiomics models. The clinical radiomics nomogram was well calibrated (p > 0.05). The decision curve analysis indicated its clinical usefulness. Conclusion: The clinical-radiomics model outperformed individual clinical or radiomics models and achieved satisfactory performance in predicting AIS outcomes.

Fully Automatic Coronary Calcium Score Software Empowered by Artificial Intelligence Technology: Validation Study Using Three CT Cohorts

  • June-Goo Lee;HeeSoo Kim;Heejun Kang;Hyun Jung Koo;Joon-Won Kang;Young-Hak Kim;Dong Hyun Yang
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1764-1776
    • /
    • 2021
  • Objective: This study aimed to validate a deep learning-based fully automatic calcium scoring (coronary artery calcium [CAC]_auto) system using previously published cardiac computed tomography (CT) cohort data with the manually segmented coronary calcium scoring (CAC_hand) system as the reference standard. Materials and Methods: We developed the CAC_auto system using 100 co-registered, non-enhanced and contrast-enhanced CT scans. For the validation of the CAC_auto system, three previously published CT cohorts (n = 2985) were chosen to represent different clinical scenarios (i.e., 2647 asymptomatic, 220 symptomatic, 118 valve disease) and four CT models. The performance of the CAC_auto system in detecting coronary calcium was determined. The reliability of the system in measuring the Agatston score as compared with CAC_hand was also evaluated per vessel and per patient using intraclass correlation coefficients (ICCs) and Bland-Altman analysis. The agreement between CAC_auto and CAC_hand based on the cardiovascular risk stratification categories (Agatston score: 0, 1-10, 11-100, 101-400, > 400) was evaluated. Results: In 2985 patients, 6218 coronary calcium lesions were identified using CAC_hand. The per-lesion sensitivity and false-positive rate of the CAC_auto system in detecting coronary calcium were 93.3% (5800 of 6218) and 0.11 false-positive lesions per patient, respectively. The CAC_auto system, in measuring the Agatston score, yielded ICCs of 0.99 for all the vessels (left main 0.91, left anterior descending 0.99, left circumflex 0.96, right coronary 0.99). The limits of agreement between CAC_auto and CAC_hand were 1.6 ± 52.2. The linearly weighted kappa value for the Agatston score categorization was 0.94. The main causes of false-positive results were image noise (29.1%, 97/333 lesions), aortic wall calcification (25.5%, 85/333 lesions), and pericardial calcification (24.3%, 81/333 lesions). Conclusion: The atlas-based CAC_auto empowered by deep learning provided accurate calcium score measurement as compared with manual method and risk category classification, which could potentially streamline CAC imaging workflows.

Multimodal Emotion Recognition using Face Image and Speech (얼굴영상과 음성을 이용한 멀티모달 감정인식)

  • Lee, Hyeon Gu;Kim, Dong Ju
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.1
    • /
    • pp.29-40
    • /
    • 2012
  • A challenging research issue that has been one of growing importance to those working in human-computer interaction are to endow a machine with an emotional intelligence. Thus, emotion recognition technology plays an important role in the research area of human-computer interaction, and it allows a more natural and more human-like communication between human and computer. In this paper, we propose the multimodal emotion recognition system using face and speech to improve recognition performance. The distance measurement of the face-based emotion recognition is calculated by 2D-PCA of MCS-LBP image and nearest neighbor classifier, and also the likelihood measurement is obtained by Gaussian mixture model algorithm based on pitch and mel-frequency cepstral coefficient features in speech-based emotion recognition. The individual matching scores obtained from face and speech are combined using a weighted-summation operation, and the fused-score is utilized to classify the human emotion. Through experimental results, the proposed method exhibits improved recognition accuracy of about 11.25% to 19.75% when compared to the most uni-modal approach. From these results, we confirmed that the proposed approach achieved a significant performance improvement and the proposed method was very effective.

Flood Risk Assessment Based on Bias-Corrected RCP Scenarios with Quantile Mapping at a Si-Gun Level (분위사상법을 적용한 RCP 시나리오 기반 시군별 홍수 위험도 평가)

  • Park, Jihoon;Kang, Moon Seong;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.73-82
    • /
    • 2013
  • The main objective of this study was to evaluate Representative Concentration Pathways (RCP) scenarios-based flood risk at a Si-Gun level. A bias correction using a quantile mapping method with the Generalized Extreme Value (GEV) distribution was performed to correct future precipitation data provided by the Korea Meteorological Administration (KMA). A series of proxy variables including CN80 (Number of days over 80 mm) and CX3h (Maximum precipitation during 3-hr) etc. were used to carry out flood risk assessment. Indicators were normalized by a Z-score method and weighted by factors estimated by principal component analysis (PCA). Flood risk evaluation was conducted for the four different time periods, i.e. 1990s, 2025s, 2055s, and 2085s, which correspond to 1976~2005, 2011~2040, 2041~2070, and 2071~2100. The average flood risk indices based on RCP4.5 scenario were 0.08, 0.16, 0.22, and 0.13 for the corresponding periods in the order of time, which increased steadily up to 2055s period and decreased. The average indices based on RCP8.5 scenario were 0.08, 0.23, 0.11, and 0.21, which decreased in the 2055s period and then increased again. Considering the average index during entire period of the future, RCP8.5 scenario resulted in greater risk than RCP4.5 scenario.

Design of KPI on Individual Performance Measurement System (개별성과측정시스템의 주요성과지표 설계 연구)

  • Hong, Hyun-Gi;Oh, Sang-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.815-821
    • /
    • 2008
  • Performance of corporation results from operation of tangible and intangible assets. Thus, measuring performance need to be taken place in terms of tangible and intangible aspects. However, the research objects, in the measurement of performance, do not guarantee researchers to achieve quantitative results and it is difficult to have objectivity. There are also many different points between a big enterprise and a small-medium size company. These facts require new measurement methods. This study suggests aspects of measurement method as task, attitude, ability and qualification for small-medium size companies. Specially, this study suggest individual measurement method than organizational one. The research system consists of users, team leaders and staffs charge of BSC and the users can access BSC sewer to input, to evaluate and to prove data through their own accounts.

Analysis of the Physical Characteristics and Tranquility of the Valley in Gangwon Province (강원지역 계곡의 물리적 특성 및 고요함 분석)

  • Kim, Kyoung-Nam;Han, Gab-Soo
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.1
    • /
    • pp.152-160
    • /
    • 2014
  • The purpose of this study is to investigate and analyze the physical characteristics and tranquility of the valleys located in Gangwon region. For this study we analyzed the field survey data 135 valleys using GIS. The elements for measurement of tranquility were divided into visual elements including terrain, objects, forest, water and auditory elements including noise. These elements were divided further into positive and negative factors. The weight of each element and item was calculated by applying the AHP method. The results of this study are as follows. The length of the valley ranged from 126 m to 17 km, and the elevation ranged from 40 m to 1,800 m. Type of mixed forest was common in the valleys. The depth of the water was over 20 cm in 83% of the total area and most of the water was in good condition in visual quality. Regarding the positive factors of tranquility, the weighted scores of the objects, waterfall sounds and visual transparence of the water were of relatively high value. Relatively high values were also shown in closed and curved topography in the landform, forest type and natural forests. In the negative factors, the weights of the objects and forest elements had high values. Within the facility groups, facility of the river produced a considerable negative. After applying the index of tranquility, the natural physical attributes affected the tranquility value, more than the manmade structures to a much greater degree.