• 제목/요약/키워드: Weighted Relative Entropy

검색결과 3건 처리시간 0.016초

Cognitive Virtual Network Embedding Algorithm Based on Weighted Relative Entropy

  • Su, Yuze;Meng, Xiangru;Zhao, Zhiyuan;Li, Zhentao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.1845-1865
    • /
    • 2019
  • Current Internet is designed by lots of service providers with different objects and policies which make the direct deployment of radically new architecture and protocols on Internet nearly impossible without reaching a consensus among almost all of them. Network virtualization is proposed to fend off this ossification of Internet architecture and add diversity to the future Internet. As an important part of network virtualization, virtual network embedding (VNE) problem has received more and more attention. In order to solve the problems of large embedding cost, low acceptance ratio (AR) and environmental adaptability in VNE algorithms, cognitive method is introduced to improve the adaptability to the changing environment and a cognitive virtual network embedding algorithm based on weighted relative entropy (WRE-CVNE) is proposed in this paper. At first, the weighted relative entropy (WRE) method is proposed to select the suitable substrate nodes and paths in VNE. In WRE method, the ranking indicators and their weighting coefficients are selected to calculate the node importance and path importance. It is the basic of the WRE-CVNE. In virtual node embedding stage, the WRE method and breadth first search (BFS) algorithm are both used, and the node proximity is introduced into substrate node ranking to achieve the joint topology awareness. Finally, in virtual link embedding stage, the CPU resource balance degree, bandwidth resource balance degree and path hop counts are taken into account. The path importance is calculated based on the WRE method and the suitable substrate path is selected to reduce the resource fragmentation. Simulation results show that the proposed algorithm can significantly improve AR and the long-term average revenue to cost ratio (LTAR/CR) by adjusting the weighting coefficients in VNE stage according to the network environment. We also analyze the impact of weighting coefficient on the performance of the WRE-CVNE. In addition, the adaptability of the WRE-CVNE is researched in three different scenarios and the effectiveness and efficiency of the WRE-CVNE are demonstrated.

Sequence dicriminative training 기법을 사용한 트랜스포머 기반 음향 모델 성능 향상 (Improving transformer-based acoustic model performance using sequence discriminative training)

  • 이채원;장준혁
    • 한국음향학회지
    • /
    • 제41권3호
    • /
    • pp.335-341
    • /
    • 2022
  • 본 논문에서는 기존 자연어 처리 분야에서 뛰어난 성능을 보이는 트랜스포머를 하이브리드 음성인식에서의 음향모델로 사용하였다. 트랜스포머 음향모델은 attention 구조를 사용하여 시계열 데이터를 처리하며 연산량이 낮으면서 높은 성능을 보인다. 본 논문은 이러한 트랜스포머 AM에 기존 DNN-HMM 모델에서 사용하는 가중 유한 상태 전이기(weighted Finite-State Transducer, wFST) 기반 학습인 시퀀스 분류 학습의 네 가지 알고리즘을 각각 적용하여 성능을 높이는 방법을 제안한다. 또한 기존 Cross Entropy(CE)를 사용한 학습방식과 비교하여 5 %의 상대적 word error rate(WER) 감소율을 보였다.

ZnS multi-phase에 따른 발광특성 연구 (Study on the Luminescence Properties according to ZnS multi-phase)

  • 김광복;김용일;천희곤;조동율;구경완
    • 한국전기전자재료학회논문지
    • /
    • 제14권1호
    • /
    • pp.48-53
    • /
    • 2001
  • The crystal structure of ZnS fabricated by gas-liquid phase reaction was refined by the Rietveld program using X-ray diffraction data. The R-weighted pattern (R$\sub$wp/) of ZnS powder was 10.85%. The fraction of HCP phase was closely related with extra amount of H$_2$S gas. The lattice parameters and crystalline size were changed by the relative ratio of multi-phase. The luminescence property of ZnS:Cu, Al green phosphors prepared by conventional methods was good in the range of 91∼94% and 150∼190${\AA}$, respectively. According to the maximum entropy electron density(MEED) methods, any defects in (001) plane of cubic phase were not found. We suggest that both the Rietveld and maximum entropy density methods may be useful tools for studying luminescence mechanism of other phosphors materials.

  • PDF