• Title/Summary/Keyword: Weighted Price Index

Search Result 24, Processing Time 0.02 seconds

Robo-Advisor Algorithm with Intelligent View Model (지능형 전망모형을 결합한 로보어드바이저 알고리즘)

  • Kim, Sunwoong
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.39-55
    • /
    • 2019
  • Recently banks and large financial institutions have introduced lots of Robo-Advisor products. Robo-Advisor is a Robot to produce the optimal asset allocation portfolio for investors by using the financial engineering algorithms without any human intervention. Since the first introduction in Wall Street in 2008, the market size has grown to 60 billion dollars and is expected to expand to 2,000 billion dollars by 2020. Since Robo-Advisor algorithms suggest asset allocation output to investors, mathematical or statistical asset allocation strategies are applied. Mean variance optimization model developed by Markowitz is the typical asset allocation model. The model is a simple but quite intuitive portfolio strategy. For example, assets are allocated in order to minimize the risk on the portfolio while maximizing the expected return on the portfolio using optimization techniques. Despite its theoretical background, both academics and practitioners find that the standard mean variance optimization portfolio is very sensitive to the expected returns calculated by past price data. Corner solutions are often found to be allocated only to a few assets. The Black-Litterman Optimization model overcomes these problems by choosing a neutral Capital Asset Pricing Model equilibrium point. Implied equilibrium returns of each asset are derived from equilibrium market portfolio through reverse optimization. The Black-Litterman model uses a Bayesian approach to combine the subjective views on the price forecast of one or more assets with implied equilibrium returns, resulting a new estimates of risk and expected returns. These new estimates can produce optimal portfolio by the well-known Markowitz mean-variance optimization algorithm. If the investor does not have any views on his asset classes, the Black-Litterman optimization model produce the same portfolio as the market portfolio. What if the subjective views are incorrect? A survey on reports of stocks performance recommended by securities analysts show very poor results. Therefore the incorrect views combined with implied equilibrium returns may produce very poor portfolio output to the Black-Litterman model users. This paper suggests an objective investor views model based on Support Vector Machines(SVM), which have showed good performance results in stock price forecasting. SVM is a discriminative classifier defined by a separating hyper plane. The linear, radial basis and polynomial kernel functions are used to learn the hyper planes. Input variables for the SVM are returns, standard deviations, Stochastics %K and price parity degree for each asset class. SVM output returns expected stock price movements and their probabilities, which are used as input variables in the intelligent views model. The stock price movements are categorized by three phases; down, neutral and up. The expected stock returns make P matrix and their probability results are used in Q matrix. Implied equilibrium returns vector is combined with the intelligent views matrix, resulting the Black-Litterman optimal portfolio. For comparisons, Markowitz mean-variance optimization model and risk parity model are used. The value weighted market portfolio and equal weighted market portfolio are used as benchmark indexes. We collect the 8 KOSPI 200 sector indexes from January 2008 to December 2018 including 132 monthly index values. Training period is from 2008 to 2015 and testing period is from 2016 to 2018. Our suggested intelligent view model combined with implied equilibrium returns produced the optimal Black-Litterman portfolio. The out of sample period portfolio showed better performance compared with the well-known Markowitz mean-variance optimization portfolio, risk parity portfolio and market portfolio. The total return from 3 year-period Black-Litterman portfolio records 6.4%, which is the highest value. The maximum draw down is -20.8%, which is also the lowest value. Sharpe Ratio shows the highest value, 0.17. It measures the return to risk ratio. Overall, our suggested view model shows the possibility of replacing subjective analysts's views with objective view model for practitioners to apply the Robo-Advisor asset allocation algorithms in the real trading fields.

Gross Profitability Premium in the Korean Stock Market and Its Implication for the Fund Distribution Industry (한국 주식시장에서 총수익성 프리미엄에 관한 분석 및 펀드 유통산업에 주는 시사점)

  • Yoon, Bo-Hyun;Liu, Won-Suk
    • Journal of Distribution Science
    • /
    • v.13 no.9
    • /
    • pp.37-45
    • /
    • 2015
  • Purpose - This paper's aim is to investigate whether or not gross profitability explains the cross-sectional variation of the stock returns in the Korean stock market. Gross profitability is an alternative profitability measure proposed by Novy-Marx in 2013 to predict cross-sectional variation of stock returns in the US. He shows that the gross profitability adds explanatory power to the Fama-French 3 factor model. Interestingly, gross profitability is negatively correlated with the book-to-market ratio. By confirming the gross profitability premium in the Korean stock market, we may provide some implications regarding the well-known value premium. In addition, our empirical results may provide opportunities for the fund distribution industry to promote brand new styles of funds. Research design, data, and methodology - For our empirical analysis, we collect monthly market prices of all the companies listed on the Korea Composite Stock Price Index (KOSPI) of the Korea Exchanges (KRX). Our sample period covers July1994 to December2014. The data from the company financial statementsare provided by the financial information company WISEfn. First, using Fama-Macbeth cross-sectional regression, we investigate the relation between gross profitability and stock return performance. For robustness in analyzing the performance of the gross profitability strategy, we consider value weighted portfolio returns as well as equally weighted portfolio returns. Next, using Fama-French 3 factor models, we examine whether or not the gross profitability strategy generates excess returns when firmsize and the book-to-market ratio are controlled. Finally, we analyze the effect of firm size and the book-to-market ratio on the gross profitability strategy. Results - First, through the Fama-MacBeth cross-sectional regression, we show that gross profitability has almost the same explanatory power as the book-to-market ratio in explaining the cross-sectional variation of the Korean stock market. Second, we find evidence that gross profitability is a statistically significant variable for explaining cross-sectional stock returns when the size and the value effect are controlled. Third, we show that gross profitability, which is positively correlated with stock returns and firm size, is negatively correlated with the book-to-market ratio. From the perspective of portfolio management, our results imply that since the gross profitability strategy is a distinctive growth strategy, value strategies can be improved by hedging with the gross profitability strategy. Conclusions - Our empirical results confirm the existence of a gross profitability premium in the Korean stock market. From the perspective of the fund distribution industry, the gross profitability portfolio is worthy of attention. Since the value strategy portfolio returns are negatively correlated with the gross profitability strategy portfolio returns, by mixing both portfolios, investors could be better off without additional risk. However, the profitable firms are dissimilar from the value firms (high book-to-market ratio firms); therefore, an alternative factor model including gross profitability may help us understand the economic implications of the well-known anomalies such as value premium, momentum, and low volatility. We reserve these topics for future research.

Performance of Investment Strategy using Investor-specific Transaction Information and Machine Learning (투자자별 거래정보와 머신러닝을 활용한 투자전략의 성과)

  • Kim, Kyung Mock;Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.65-82
    • /
    • 2021
  • Stock market investors are generally split into foreign investors, institutional investors, and individual investors. Compared to individual investor groups, professional investor groups such as foreign investors have an advantage in information and financial power and, as a result, foreign investors are known to show good investment performance among market participants. The purpose of this study is to propose an investment strategy that combines investor-specific transaction information and machine learning, and to analyze the portfolio investment performance of the proposed model using actual stock price and investor-specific transaction data. The Korea Exchange offers daily information on the volume of purchase and sale of each investor to securities firms. We developed a data collection program in C# programming language using an API provided by Daishin Securities Cybosplus, and collected 151 out of 200 KOSPI stocks with daily opening price, closing price and investor-specific net purchase data from January 2, 2007 to July 31, 2017. The self-organizing map model is an artificial neural network that performs clustering by unsupervised learning and has been introduced by Teuvo Kohonen since 1984. We implement competition among intra-surface artificial neurons, and all connections are non-recursive artificial neural networks that go from bottom to top. It can also be expanded to multiple layers, although many fault layers are commonly used. Linear functions are used by active functions of artificial nerve cells, and learning rules use Instar rules as well as general competitive learning. The core of the backpropagation model is the model that performs classification by supervised learning as an artificial neural network. We grouped and transformed investor-specific transaction volume data to learn backpropagation models through the self-organizing map model of artificial neural networks. As a result of the estimation of verification data through training, the portfolios were rebalanced monthly. For performance analysis, a passive portfolio was designated and the KOSPI 200 and KOSPI index returns for proxies on market returns were also obtained. Performance analysis was conducted using the equally-weighted portfolio return, compound interest rate, annual return, Maximum Draw Down, standard deviation, and Sharpe Ratio. Buy and hold returns of the top 10 market capitalization stocks are designated as a benchmark. Buy and hold strategy is the best strategy under the efficient market hypothesis. The prediction rate of learning data using backpropagation model was significantly high at 96.61%, while the prediction rate of verification data was also relatively high in the results of the 57.1% verification data. The performance evaluation of self-organizing map grouping can be determined as a result of a backpropagation model. This is because if the grouping results of the self-organizing map model had been poor, the learning results of the backpropagation model would have been poor. In this way, the performance assessment of machine learning is judged to be better learned than previous studies. Our portfolio doubled the return on the benchmark and performed better than the market returns on the KOSPI and KOSPI 200 indexes. In contrast to the benchmark, the MDD and standard deviation for portfolio risk indicators also showed better results. The Sharpe Ratio performed higher than benchmarks and stock market indexes. Through this, we presented the direction of portfolio composition program using machine learning and investor-specific transaction information and showed that it can be used to develop programs for real stock investment. The return is the result of monthly portfolio composition and asset rebalancing to the same proportion. Better outcomes are predicted when forming a monthly portfolio if the system is enforced by rebalancing the suggested stocks continuously without selling and re-buying it. Therefore, real transactions appear to be relevant.

Economic Impact of the Tariff Reform : A General Equilibrium Approach (관세율(關稅率) 조정(調整) 경제적(經濟的) 효과분석(效果分析) : 일반균형적(一般均衡的) 접근(接近))

  • Lee, Won-yong
    • KDI Journal of Economic Policy
    • /
    • v.12 no.1
    • /
    • pp.69-91
    • /
    • 1990
  • A major change in tariff rates was made in January 1989 in Korea. The benchmark tariff rate, which applies to about two thirds of all commodity items, was lowered to 15 percent from 20 percent. In addition, the variation in tariff rates among different types of commodities was reduced. This paper examines the economic impact of the tariff reform using a multisectoral general equilibrium model of the Korean economy which was introduced by Lee and Chang(1988), and by Lee(1988). More specifically, this paper attempts to find the changes in imports, exports, domestic production, consumption, prices, and employment in 31 different sectors of the economy induced by the reform in tariff rates. The policy simulations are made according to three different methods. First, tariff changes in industries are calculated strictly according to the change in legal tariff rates, which tend to over-estimate the size of the tariff reduction given the tariff-drawback system and tariff exemption applied to various import items. Second, tariff changes in industries are obtained by dividing the estimated tariff revenues of each industry by the estimated imports for that industry, which are often called actual tariff rates. According to the first method, the import-weighted average tariff rate is lowered from 15.2% to 10.2%, while the second method changes the average tariff rate from 6.2% to 4.2%. In the third method, the tariff-drawback system is internalized in the model. This paper reports the results of the policy simulation according to all three methods, comparing them with one another. It is argued that the second method yields the most realistic estimate of the changes in macro-economic variables, while the third method is useful in delineating the differences in impact across industries. The findings, according to the second method, show that the tariff reform induces more imports in most sectors. Garments, leather products, and wood products are those industries in which imports increase by more than 5 percent. On the other hand, imports in agricultural, mining and service sectors are least affected. Domestic production increases in all sectors except the following: leather products, non-metalic products, chemicals, paper and paper products, and wood-product industries. The increase in production and employment is largest in export industries, followed by service industries. An impact on macroeconomic variables is also simulated. The tariff reform increases nominal GNP by 0.26 percent, lowers the consumer price index by 0.49 percent, increases employment by 0.24 percent, and worsens the trade balance by 480 million US dollars, through a rise in exports of 540 million US dollars and a rise in imports of 1.02 billion US dollars.

  • PDF