• 제목/요약/키워드: Weighted Prediction

검색결과 248건 처리시간 0.032초

A Basic Study on Development of a Tracking Module for ARPA system for Use on High Dynamic Warships

  • Njonjo, Anne Wanjiru;Pan, Bao-Feng;Jeong, Tae-Gweon
    • 한국항해항만학회지
    • /
    • 제40권2호
    • /
    • pp.83-87
    • /
    • 2016
  • The maritime industry is expanding at an alarming rate hence there is a perpetual need to improve situation awareness in the maritime environment using new and emerging technology. Tracking is one of the numerous ways of enhancing situation awareness by providing information that may be useful to the operator. The tracking module designed herein comprises determining existing states of high dynamic target warship, state prediction and state compensation due to random noise. This is achieved by first analyzing the process of tracking followed by design of a tracking algorithm that uses ${\alpha}-{\beta}-{\gamma}$ tracking filter under a random noise. The algorithm involves initializing the state parameters which include position, velocity, acceleration and the course. This is then followed by state prediction at each time interval. A weighted difference of the observed and predicted state values at the $n^{th}$ observation is added to the predicted state to obtain the smoothed (filtered) state. This estimation is subsequently employed to determine the predicted state in the next radar scan. The filtering coefficients ${\alpha}$, ${\beta}$ and ${\gamma}$ are determined from a pre-determined value of the damping parameter, ${\xi}$. The smoothed, predicted and the observed positions are used to compute the twice distance root mean square (2drms) error as a measure of the ability of the tracking module to manage the noise to acceptable levels.

머신러닝 CatBoost 다중 분류 알고리즘을 이용한 조류 발생 예측 모형 성능 평가 연구 (Evaluation of Multi-classification Model Performance for Algal Bloom Prediction Using CatBoost)

  • 김준오;박정수
    • 한국물환경학회지
    • /
    • 제39권1호
    • /
    • pp.1-8
    • /
    • 2023
  • Monitoring and prediction of water quality are essential for effective river pollution prevention and water quality management. In this study, a multi-classification model was developed to predict chlorophyll-a (Chl-a) level in rivers. A model was developed using CatBoost, a novel ensemble machine learning algorithm. The model was developed using hourly field monitoring data collected from January 1 to December 31, 2015. For model development, chl-a was classified into class 1 (Chl-a≤10 ㎍/L), class 2 (10<Chl-a≤50 ㎍/L), and class 3 (Chl-a>50 ㎍/L), where the number of data used for the model training were 27,192, 11,031, and 511, respectively. The macro averages of precision, recall, and F1-score for the three classes were 0.58, 0.58, and 0.58, respectively, while the weighted averages were 0.89, 0.90, and 0.89, for precision, recall, and F1-score, respectively. The model showed relatively poor performance for class 3 where the number of observations was much smaller compared to the other two classes. The imbalance of data distribution among the three classes was resolved by using the synthetic minority over-sampling technique (SMOTE) algorithm, where the number of data used for model training was evenly distributed as 26,868 for each class. The model performance was improved with the macro averages of precision, rcall, and F1-score of the three classes as 0.58, 0.70, and 0.59, respectively, while the weighted averages were 0.88, 0.84, and 0.86 after SMOTE application.

가중유출수질지표를 이용한 활성오니공정모델의 민감도 분석과 매개변수 보정 (Sensitivity Analysis and Parameter Estimation of Activated Sludge Model Using Weighted Effluent Quality Index)

  • 이원영;김민한;김영황;이인범;유창규
    • 제어로봇시스템학회논문지
    • /
    • 제14권11호
    • /
    • pp.1174-1179
    • /
    • 2008
  • Many modeling and calibration methods have been developed to analyze and design the biological wastewater treatment process. For the systematic use of activated sludge model (ASM) in a real treatment process, a most important step in this usage is a calibration which can find a key parameter set of ASM, which depends on the microorganism communities and the process conditions of the plants. In this paper, a standardized calibration protocol of the ASM model is developed. First, a weighted effluent quality index(WEQI) is suggested far a calibration protocol. Second, the most sensitive parameter set is determined by a sensitive analysis based on WEQI and then a parameter optimization method are used for a systematic calibration of key parameters. The proposed method is applied to a calibration problems of the single carbon removal process. The results of the sensitivity analysis and parameter estimation based on a WEQI shows a quite reasonable parameter set and precisely estimated parameters, which can improve the quality and the efficiency of the modeling and the prediction of ASM model. Moreover, it can be used for a calibration scheme of other biological processes, such as sequence batch reactor, anaerobic digestion process with a dedicated methodology.

Simulation study on one-step ahead control of a photovoltaic energy storage system

  • Sugisaka, Masanori;Kuroiwa, Kenzo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집(한일합동학술편); 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.741-746
    • /
    • 1987
  • Solar cell which transforms the light energy into the electric energy from Sun comes into prominence as a new energy for next generation. However, it is difficult to obtain the stable output voltage and current from the solar cell due to the uncertainty in weather conditions, etc, In the present paper, two types of control laws are considered for regulating the input voltage in a photovoltaic energy storage system such as the system with the super conducting magnetic energy storage. (1) Oone is the design of optimal controller. (2) The other is that of weighted minimum prediction error controllers (weighted one-step ahead controllers). Simulation study for the above controllers is performed to see how they work and to get preliminary knowledge in the regulation of the input voltage to the experimental photovoltaic energy storage system.

  • PDF

가중치 세분화 기반의 로지스틱 회귀분석 모델 (Fine-Grain Weighted Logistic Regression Model)

  • 이창환
    • 전자공학회논문지
    • /
    • 제53권9호
    • /
    • pp.77-81
    • /
    • 2016
  • 로지스틱 회귀분석은 오랫동안 다양한 분야에서 예측을 위한 기술 혹은 변수 간의 관계를 설명하기 위하여 사용되어 왔다. 로지스틱 회귀분석에서 각 속성은 목적 값에 대한 중요도를 가지는데 본 연구에서는 이를 세분화하여 각 속성의 값에 따라서 중요도를 부여하는 새로운 방법을 제시한다. 점진적 하강법을 이용하여 알고리즘의 성능을 최대화하는 각 속성값 가중치의 값을 계산하였다. 제안된 방법은 다양한 데이터를 이용하여 실험하였고 본 연구의 속성값 기반 로지스틱 회귀분석 방법은 기존의 로지스틱 회귀분석보다 우수한 학습 능력을 보임을 알 수 있었다.

Acute Acquired Metabolic Encephalopathy Based on Diffusion MRI

  • Se Jeong Jeon;See Sung Choi;Ha Yon Kim;In Kyu Yu
    • Korean Journal of Radiology
    • /
    • 제22권12호
    • /
    • pp.2034-2051
    • /
    • 2021
  • Metabolic encephalopathy is a critical condition that can be challenging to diagnose. Imaging provides early clues to confirm clinical suspicions and plays an important role in the diagnosis, assessment of the response to therapy, and prognosis prediction. Diffusion-weighted imaging is a sensitive technique used to evaluate metabolic encephalopathy at an early stage. Metabolic encephalopathies often involve the deep regions of the gray matter because they have high energy requirements and are susceptible to metabolic disturbances. Understanding the imaging patterns of various metabolic encephalopathies can help narrow the differential diagnosis and improve the prognosis of patients by initiating proper treatment regimen early.

토양정보별 포장내 공간변이 예측에 관한 연구 (The Prediction of Spacial Variability for Soil Information in Paddy Field)

  • 정인규;성제훈;이충근;김상철;이용범
    • Journal of Biosystems Engineering
    • /
    • 제29권1호
    • /
    • pp.65-70
    • /
    • 2004
  • This study was carried out to verify and predict the soil informations such as the contents of organic matter(OM) and Mg and pH of the soil. The predictability of spacial variation in the paddy field was examined by analyzing the various soil information. The prediction models for the OM pH, and Mg, were developed using inverse distance weighted (IDW), triangulated irregular network(TIN) and Kriging model. The determination of coefficients of linear and spherical Kriging models were 0.756 and 0.578, respectively, and were very low in comparison with other soil information. For IDW and TIN model, the determination of coefficients were 1.000 and hence the performance of the models was found to be excellent. The developed models were validated using unknown soil sample obtained In 2000 and 2001. From the analysis of relationship between the measured pH and predicted 0.9353. For prediction of Mg, the determination of coefficient is more than 0.8. Since the determination of coefficients of developed models for OM were relatively low, it may be difficult to predict the content of OM using the developed models. For further study, the additional works to enhance the performance of the prediction models for soil information are required.

Assessment of genomic prediction accuracy using different selection and evaluation approaches in a simulated Korean beef cattle population

  • Nwogwugwu, Chiemela Peter;Kim, Yeongkuk;Choi, Hyunji;Lee, Jun Heon;Lee, Seung-Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권12호
    • /
    • pp.1912-1921
    • /
    • 2020
  • Objective: This study assessed genomic prediction accuracies based on different selection methods, evaluation procedures, training population (TP) sizes, heritability (h2) levels, marker densities and pedigree error (PE) rates in a simulated Korean beef cattle population. Methods: A simulation was performed using two different selection methods, phenotypic and estimated breeding value (EBV), with an h2 of 0.1, 0.3, or 0.5 and marker densities of 10, 50, or 777K. A total of 275 males and 2,475 females were randomly selected from the last generation to simulate ten recent generations. The simulation of the PE dataset was modified using only the EBV method of selection with a marker density of 50K and a heritability of 0.3. The proportions of errors substituted were 10%, 20%, 30%, and 40%, respectively. Genetic evaluations were performed using genomic best linear unbiased prediction (GBLUP) and single-step GBLUP (ssGBLUP) with different weighted values. The accuracies of the predictions were determined. Results: Compared with phenotypic selection, the results revealed that the prediction accuracies obtained using GBLUP and ssGBLUP increased across heritability levels and TP sizes during EBV selection. However, an increase in the marker density did not yield higher accuracy in either method except when the h2 was 0.3 under the EBV selection method. Based on EBV selection with a heritability of 0.1 and a marker density of 10K, GBLUP and ssGBLUP_0.95 prediction accuracy was higher than that obtained by phenotypic selection. The prediction accuracies from ssGBLUP_0.95 outperformed those from the GBLUP method across all scenarios. When errors were introduced into the pedigree dataset, the prediction accuracies were only minimally influenced across all scenarios. Conclusion: Our study suggests that the use of ssGBLUP_0.95, EBV selection, and low marker density could help improve genetic gains in beef cattle.

기후변화에 따른 송악의 잠재서식지 분포 변화 예측 (Potential Impact of Climate Change on Distribution of Hedera rhombea in the Korean Peninsula)

  • 박선욱;구경아;서창완;공우석
    • 한국기후변화학회지
    • /
    • 제7권3호
    • /
    • pp.325-334
    • /
    • 2016
  • We projected the distribution of Hedera rhombea, an evergreen broad-leaved climbing plant, under current climate conditions and predicted its future distributions under global warming. Inaddition, weexplained model uncertainty by employing 9 single Species Distribution model (SDM)s to model the distribution of Hedera rhombea. 9 single SDMs were constructed with 736 presence/absence data and 3 temperature and 3 precipitation data. Uncertainty of each SDM was assessed with TSS (Ture Skill Statistics) and AUC (the Area under the curve) value of ROC (receiver operating characteristic) analyses. To reduce model uncertainty, we combined 9 single SDMs weighted by TSS and resulted in an ensemble forecast, a TSS weighted ensemble. We predicted future distributions of Hedera rhombea under future climate conditions for the period of 2050 (2040~2060), which were estimated with HadGEM2-AO. RF (Random Forest), GBM (Generalized Boosted Model) and TSS weighted ensemble model showed higher prediction accuracies (AUC > 0.95, TSS > 0.80) than other SDMs. Based on the projections of TSS weighted ensemble, potential habitats under current climate conditions showed a discrepancy with actual habitats, especially in the northern distribution limit. The observed northern boundary of Hedera rhombea is Ulsan in the eastern Korean Peninsula, but the projected limit was eastern coast of Gangwon province. Geomorphological conditions and the dispersal limitations mediated by birds, the lack of bird habitats at eastern coast of Gangwon Province, account for such discrepancy. In general, potential habitats of Hedera rhombea expanded under future climate conditions, but the extent of expansions depend on RCP scenarios. Potential Habitat of Hedera rhombea expanded into Jeolla-inland area under RCP 4.5, and into Chungnam and Wonsan under RCP 8.5. Our results would be fundamental information for understanding the potential effects of climate change on the distribution of Hedera rhombea.

Prediction of Colorectal Cancer Risk Using a Genetic Risk Score: The Korean Cancer Prevention Study-II (KCPS-II)

  • Jo, Jae-Seong;Nam, Chung-Mo;Sull, Jae-Woong;Yun, Ji-Eun;Kim, Sang-Yeun;Lee, Sun-Ju;Kim, Yoon-Nam;Park, Eun-Jung;Kimm, Hee-Jin;Jee, Sun-Ha
    • Genomics & Informatics
    • /
    • 제10권3호
    • /
    • pp.175-183
    • /
    • 2012
  • Colorectal cancer (CRC) is among the leading causes of cancer deaths and can be caused by environmental factors as well as genetic factors. Therefore, we developed a prediction model of CRC using genetic risk scores (GRS) and evaluated the effects of conventional risk factors, including family history of CRC, in combination with GRS on the risk of CRC in Koreans. This study included 187 cases (men, 133; women, 54) and 976 controls (men, 554; women, 422). GRS were calculated with most significantly associated single-nucleotide polymorphism with CRC through a genomewide association study. The area under the curve (AUC) increased by 0.5% to 5.2% when either counted or weighted GRS was added to a prediction model consisting of age alone (AUC 0.687 for men, 0.598 for women) or age and family history of CRC (AUC 0.692 for men, 0.603 for women) for both men and women. Furthermore, the risk of CRC significantly increased for individuals with a family history of CRC in the highest quartile of GRS when compared to subjects without a family history of CRC in the lowest quartile of GRS (counted GRS odds ratio [OR], 47.9; 95% confidence interval [CI], 4.9 to 471.8 for men; OR, 22.3; 95% CI, 1.4 to 344.2 for women) (weighted GRS OR, 35.9; 95% CI, 5.9 to 218.2 for men; OR, 18.1, 95% CI, 3.7 to 88.1 for women). Our findings suggest that in Koreans, especially in Korean men, GRS improve the prediction of CRC when considered in conjunction with age and family history of CRC.