• Title/Summary/Keyword: Weighted Network Analysis

Search Result 158, Processing Time 0.027 seconds

An Estimated Closeness Centrality Ranking Algorithm and Its Performance Analysis in Large-Scale Workflow-supported Social Networks

  • Kim, Jawon;Ahn, Hyun;Park, Minjae;Kim, Sangguen;Kim, Kwanghoon Pio
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1454-1466
    • /
    • 2016
  • This paper implements an estimated ranking algorithm of closeness centrality measures in large-scale workflow-supported social networks. The traditional ranking algorithms for large-scale networks have suffered from the time complexity problem. The larger the network size is, the bigger dramatically the computation time becomes. To solve the problem on calculating ranks of closeness centrality measures in a large-scale workflow-supported social network, this paper takes an estimation-driven ranking approach, in which the ranking algorithm calculates the estimated closeness centrality measures by applying the approximation method, and then pick out a candidate set of top k actors based on their ranks of the estimated closeness centrality measures. Ultimately, the exact ranking result of the candidate set is obtained by the pure closeness centrality algorithm [1] computing the exact closeness centrality measures. The ranking algorithm of the estimation-driven ranking approach especially developed for workflow-supported social networks is named as RankCCWSSN (Rank Closeness Centrality Workflow-supported Social Network) algorithm. Based upon the algorithm, we conduct the performance evaluations, and compare the outcomes with the results from the pure algorithm. Additionally we extend the algorithm so as to be applied into weighted workflow-supported social networks that are represented by weighted matrices. After all, we confirmed that the time efficiency of the estimation-driven approach with our ranking algorithm is much higher (about 50% improvement) than the traditional approach.

Gene Co-Expression Network Analysis of Reproductive Traits in Bovine Genome

  • Lim, Dajeong;Cho, Yong-Min;Lee, Seung-Hwan;Chai, Han-Ha;Kim, Tae-Hun
    • Reproductive and Developmental Biology
    • /
    • v.37 no.4
    • /
    • pp.185-192
    • /
    • 2013
  • Many countries have implemented genetic evaluation for fertility traits in recent years. In particular, reproductive trait is a complex trait and need to require a system-level approach for identifying candidate genes related to the trait. To find the candidate gene associated with reproductive trait, we applied a weighted gene co-expression network analysis from expression value of bovine genes. We identified three co-expressed modules associated with reproductive trait from bovine microarray data. Hub genes (ZP4, FHL2 and EGR4) were determined in each module; they were topologically centered with statistically significant value in the gene co-expression network. We were able to find the highly co-expressed gene pairs with a correlation coefficient. Finally, the crucial functions of co-expressed modules were reported from functional enrichment analysis. We suggest that the network-based approach in livestock may an important method for analyzing the complex effects of candidate genes associated with economic traits like reproduction.

Analysis of a Compound-Target Network of Oryeong-san (오령산 구성성분-타겟 네트워크 분석)

  • Kim, Sang-Kyun
    • Journal of the Korea Knowledge Information Technology Society
    • /
    • v.13 no.5
    • /
    • pp.607-614
    • /
    • 2018
  • Oryeong-san is a prescription widely used for diseases where water is stagnant because it has the effect of circulating the water in the body and releasing it into the urine. In order to investigate the mechanisms of oryeong-san, we in this paper construct and analysis the compound-target network of medicinal materials constituting oryeong-san based on a systems pharmacology approach. First, the targets related to the 475 chemical compounds of oryeong-san were searched in the STITCH database, and the search results for the interactions between compounds and targets were downloaded as XML files. The compound-target network of oryeong-san is visualized and explored using Gephi 0.8.2, which is an open-source software for graphs and networks. In the network, nodes are compounds and targets, and edges are interactions between the nodes. The edge is weighted according to the reliability of the interaction. In order to analysis the compound-target network, it is clustered using MCL algorithm, which is able to cluster the weighted network. A total of 130 clusters were created, and the number of nodes in the cluster with the largest number of nodes was 32. In the clustered network, it was revealed that the active compounds of medicinal materials were associated with the targets for regulating the blood pressure in the kidney. In the future, we will clarify the mechanisms of oryeong-san by linking the information on disease databases and the network of this research.

Predicting link of R&D network to stimulate collaboration among education, industry, and research (산학연 협업 활성화를 위한 R&D 네트워크 연결 예측 연구)

  • Park, Mi-yeon;Lee, Sangheon;Jin, Guocheng;Shen, Hongme;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.37-52
    • /
    • 2015
  • The recent global trends display expansion and growing solidity in both cooperative collaboration between industry, education, and research and R&D network systems. A greater support for the network and cooperative research sector would open greater possibilities for the evolution of new scholar and industrial fields and the development of new theories evoked from synergized educational research. Similarly, the national need for a strategy that can most efficiently and effectively support R&D network that are established through the government's R&D project research is on the rise. Despite the growing urgency, due to the habitual dependency on simple individual personal information data regarding R&D industry participants and generalized statistical data references, the policies concerning network system are disappointing and inadequate. Accordingly, analyses of the relationships involved for each subject who is participating in the R&D industry was conducted and on the foundation of an educational-industrial-research network system, possible changes within and of the network that may arise were predicted. To predict the R&D network transitions, Common Neighbor and Jaccard's Coefficient models were designated as the basic foundational models, upon which a new prediction model was proposed to address the limitations of the two aforementioned former models and to increase the accuracy of Link Prediction, with which a comparative analysis was made between the two models. Through the effective predictions regarding R&D network changes and transitions, such study result serves as a stepping-stone for an establishment of a prospective strategy that supports a desirable educational-industrial-research network and proposes a measure to promote the national policy to one that can effectively and efficiently sponsor integrated R&D industries. Though both weighted applications of Common Neighbor and Jaccard's Coefficient models provided positive outcomes, improved accuracy was comparatively more prevalent in the weighted Common Neighbor. An un-weighted Common Neighbor model predicted 650 out of 4,136 whereas a weighted Common Neighbor model predicted 50 more results at a total of 700 predictions. While the Jaccard's model demonstrated slight performance improvements in numeric terms, the differences were found to be insignificant.

A Weighted Fuzzy Min-Max Neural Network for Pattern Classification (패턴 분류 문제에서 가중치를 고려한 퍼지 최대-최소 신경망)

  • Kim Ho-Joon;Park Hyun-Jung
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.8
    • /
    • pp.692-702
    • /
    • 2006
  • In this study, a weighted fuzzy min-max (WFMM) neural network model for pattern classification is proposed. The model has a modified structure of FMM neural network in which the weight concept is added to represent the frequency factor of feature values in a learning data set. First we present in this paper a new activation function of the network which is defined as a hyperbox membership function. Then we introduce a new learning algorithm for the model that consists of three kinds of processes: hyperbox creation/expansion, hyperbox overlap test, and hyperbox contraction. A weight adaptation rule considering the frequency factors is defined for the learning process. Finally we describe a feature analysis technique using the proposed model. Four kinds of relevance factors among feature values, feature types, hyperboxes and patterns classes are proposed to analyze relative importance of each feature in a given problem. Two types of practical applications, Fisher's Iris data and Cleveland medical data, have been used for the experiments. Through the experimental results, the effectiveness of the proposed method is discussed.

K-Means-Based Polynomial-Radial Basis Function Neural Network Using Space Search Algorithm: Design and Comparative Studies (공간 탐색 최적화 알고리즘을 이용한 K-Means 클러스터링 기반 다항식 방사형 기저 함수 신경회로망: 설계 및 비교 해석)

  • Kim, Wook-Dong;Oh, Sung-Kwun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.731-738
    • /
    • 2011
  • In this paper, we introduce an advanced architecture of K-Means clustering-based polynomial Radial Basis Function Neural Networks (p-RBFNNs) designed with the aid of SSOA (Space Search Optimization Algorithm) and develop a comprehensive design methodology supporting their construction. In order to design the optimized p-RBFNNs, a center value of each receptive field is determined by running the K-Means clustering algorithm and then the center value and the width of the corresponding receptive field are optimized through SSOA. The connections (weights) of the proposed p-RBFNNs are of functional character and are realized by considering three types of polynomials. In addition, a WLSE (Weighted Least Square Estimation) is used to estimate the coefficients of polynomials (serving as functional connections of the network) of each node from output node. Therefore, a local learning capability and an interpretability of the proposed model are improved. The proposed model is illustrated with the use of nonlinear function, NOx called Machine Learning dataset. A comparative analysis reveals that the proposed model exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.

Robust design on the arrangement of a sail and control planes for improvement of underwater Vehicle's maneuverability

  • Wu, Sheng-Ju;Lin, Chun-Cheng;Liu, Tsung-Lung;Su, I-Hsuan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.617-635
    • /
    • 2020
  • The purpose of this study is to discuss how to improve the maneuverability of lifting and diving for underwater vehicle's vertical motion. Therefore, to solve these problems, applied the 3-D numerical simulation, Taguchi's Design of Experiment (DOE), and intelligent parameter design methods, etc. We planned four steps as follows: firstly, we applied the 2-D flow simulation with NACA series, and then through the Taguchi's dynamic method to analyze the sensitivity (β). Secondly, take the data of pitching torque and total resistance from the Taguchi orthogonal array (L9), the ignal-to-noise ratio (SNR), and analysis each factorial contribution by ANOVA. Thirdly, used Radial Basis Function Network (RBFN) method to train the non-linear meta-modeling and found out the best factorial combination by Particle Swarm Optimization (PSO) and Weighted Percentage Reduction of Quality Loss (WPRQL). Finally, the application of the above methods gives the global optimum for multi-quality characteristics and the robust design configuration, including L/D is 9.4:1, the foreplane on the hull (Bow-2), and position of the sail is 0.25 Ls from the bow. The result shows that the total quality is improved by 86.03% in comparison with the original design.

Classification of Fall in Sick Times of Liver Cirrhosis using Magnetic Resonance Image (자기공명영상을 이용한 간경변 단계별 분류에 관한 연구)

  • Park, Byung-Rae;Jeon, Gye-Rok
    • Journal of radiological science and technology
    • /
    • v.26 no.1
    • /
    • pp.71-82
    • /
    • 2003
  • In this paper, I proposed a classifier of liver cirrhotic step using T1-weighted MRI(magnetic resonance imaging) and hierarchical neural network. The data sets for classification of each stage, which were normal, 1type, 2type and 3type, were obtained in Pusan National University Hospital from June 2001 to december 2001. And the number of data was 46. We extracted liver region and nodule region from T1-weighted MR liver image. Then objective interpretation classifier of liver cirrhotic steps in T1-weighted MR liver images. Liver cirrhosis classifier implemented using hierarchical neural network which gray-level analysis and texture feature descriptors to distinguish normal liver and 3 types of liver cirrhosis. Then proposed Neural network classifier teamed through error back-propagation algorithm. A classifying result shows that recognition rate of normal is 100%, 1type is 82.3%, 2type is 86.7%, 3type is 83.7%. The recognition ratio very high, when compared between the result of obtained quantified data to that of doctors decision data and neural network classifier value. If enough data is offered and other parameter is considered, this paper according to we expected that neural network as well as human experts and could be useful as clinical decision support tool for liver cirrhosis patients.

  • PDF

Online analysis of iron ore slurry using PGNAA technology with artificial neural network

  • Haolong Huang;Pingkun Cai;Xuwen Liang;Wenbao Jia
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2835-2841
    • /
    • 2024
  • Real-time analysis of metallic mineral grade and slurry concentration is significant for improving flotation efficiency and product quality. This study proposes an online detection method of ore slurry combining the Prompt Gamma Neutron Activation Analysis (PGNAA) technology and artificial neural network (ANN), which can provide mineral information rapidly and accurately. Firstly, a PGNAA analyzer based on a D-T neutron generator and a BGO detector was used to obtain a gamma-ray spectrum dataset of ore slurry samples, which was used to construct and optimize the ANN model for adaptive analysis. The evaluation metrics calculated by leave-one-out cross-validation indicated that, compared with the weighted library least squares (WLLS) approach, ANN obtained more precise and stable results, with mean absolute percentage errors of 4.66% and 2.80% for Fe grade and slurry concentration, respectively, and the highest average standard deviation of only 0.0119. Meanwhile, the analytical errors of the samples most affected by matrix effects was reduced to 0.61 times and 0.56 times of the WLLS method, respectively.

Evaluation of Surrogate Models for Shape Optimization of Compressor Blades

  • Samad, Abdus;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.367-370
    • /
    • 2006
  • Performances of multiple surrogate models are evaluated in a turbomachinery blade shape optimization. The basic models, i.e., Response Surface Approximation, Kriging and Radial Basis Neural Network models as well as weighted average models are tested for shape optimization. Global data based errors for each surrogates are used to calculate the weights. These weights are multiplied with the respective surrogates to get the final weighted average models. The design points are selected using three level fractional factorial D-optimal designs. The present approach can help address the multi-objective design on a rational basis with quantifiable cost-benefit analysis.

  • PDF