• Title/Summary/Keyword: Weighted Monte Carlo method

Search Result 52, Processing Time 0.023 seconds

Stochastic finite element analysis of plate structures by weighted integral method

  • Choi, Chang-Koon;Noh, Hyuk-Chun
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.703-715
    • /
    • 1996
  • In stochastic analysis, the randomness of the structural parameters is taken into consideration and the response variability is obtained in addition to the conventional (mean) response. In the present paper the structural response variability of plate structure is calculated using the weighted integral method and is compared with the results obtained by different methods. The stochastic field is assumed to be normally distributed and to have the homogeneity. The decomposition of strain-displacement matrix enabled us to extend the formulation to the stochastic analysis with the quadratic elements in the weighted integral method. A new auto-correlation function is derived considering the uncertainty of plate thickness. The results obtained in the numerical examples by two different methods, i.e., weighted integral method and Monte Carlo simulation, are in a close agreement. In the case of the variable plate thickness, the obtained results are in good agreement with those of Lawrence and Monte Carlo simulation.

On Estimation of HPD Interval for the Generalized Variance Using a Weighted Monte Carlo Method

  • Kim, Hea-Jung
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.2
    • /
    • pp.305-313
    • /
    • 2002
  • Regarding to inference about a scalar measure of internal scatter of Ρ-variate normal population, this paper considers an interval estimation of the generalized variance, │$\Sigma$│. Due to complicate sampling distribution, fully parametric frequentist approach for the interval estimation is not available and thus Bayesian method is pursued to calculate the highest probability density (HPD) interval for the generalized variance. It is seen that the marginal posterior distribution of the generalized variance is intractable, and hence a weighted Monte Carlo method, a variant of Chen and Shao (1999) method, is developed to calculate the HPD interval of the generalized variance. Necessary theories involved in the method and computation are provided. Finally, a simulation study is given to illustrate and examine the proposed method.

A BAYESIAN METHOD FOR FINDING MINIMUM GENERALIZED VARIANCE AMONG K MULTIVARIATE NORMAL POPULATIONS

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.4
    • /
    • pp.411-423
    • /
    • 2003
  • In this paper we develop a method for calculating a probability that a particular generalized variance is the smallest of all the K multivariate normal generalized variances. The method gives a way of comparing K multivariate populations in terms of their dispersion or spread, because the generalized variance is a scalar measure of the overall multivariate scatter. Fully parametric frequentist approach for the probability is intractable and thus a Bayesian method is pursued using a variant of weighted Monte Carlo (WMC) sampling based approach. Necessary theory involved in the method and computation is provided.

Non-statistical Stochastic Finite Element Method Employing Higher Order Stochastic Field Function (고차의 추계장 함수와 이를 이용한 비통계학적 추계론적 유한요소해석)

  • Noh, Hyuk-Chun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.383-390
    • /
    • 2006
  • In this paper, a stochastic field that is compatible with Monte Carlo simulation is suggested for an expansion-based stochastic analysis scheme of weighted integral method. Through investigation on the way of affection of stochastic field function on the displacement vector in the series expansion scheme, it is noticed that the stochastic field adopted in the weighted integral method is not compatible with that appears in the Monte Carlo simulation. As generally recognized in the field of stochastic mechanics, the response variability is not a linear function of the coefficient of variation of stochastic field but a nonlinear function with increasing variability as the intensity of uncertainty is increased. Employing the stochastic field suggested in this study, the response variability evaluated by means of the weighted integral scheme is reproduced with high precision even for uncertain fields with moderately large coefficient of variation. Besides, despite the fact that only the first-order expansion is employed, an outstanding agreement between the results of expansion-based weighted integral method and Monte Carlo simulation is achieved.

Monte Carlo Simulation of Phonon Transport in One-Dimensional Transient Conduction and ESD Event (1 차원 과도 전도와 정전기 방전 현상에 관한 포논 전달의 몬테 카를로 모사)

  • Oh, Jang-Hyun;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2165-2170
    • /
    • 2007
  • At nanoscales, the Boltzmann transport equation (BTE) can best describe the behavior of phonons which are energy carriers in crystalline materials. Through this study, the phonon transport in some micro/nanoscale problems was simulated with the Monte Carlo method which is a kind of the stochastic approach to the BTE. In the Monte Carlo method, the superparticles of which the number is the weighted value to the actual number of phonons are allowed to drift and be scattered by other ones based on the scattering probability. Accounting for the phonon dispersion relation and polarizations, we have confirmed the one-dimensional transient phonon transport in ballistic and diffusion limits, respectively. The thermal conductivity for GaAs was also calculated from the kinetic theory by using the proposed model. Besides, we simulated the electrostatic discharge event in the NMOS transistor as a two-dimensional problem by applying the Monte Carlo method.

  • PDF

A Bayesian Approach to Paired Comparison of Several Products of Poisson Rates

  • Kim Dae-Hwang;Kim Hea-Jung
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.229-236
    • /
    • 2004
  • This article presents a multiple comparison ranking procedure for several products of the Poisson rates. A preference probability matrix that warrants the optimal comparison ranking is introduced. Using a Bayesian Monte Carlo method, we develop simulation-based procedure to estimate the matrix and obtain the optimal ranking via a row-sum scores method. Necessary theory and two illustrative examples are provided.

  • PDF

Evaluation of the Combat Aircraft Susceptibility Against Surface-Based Threat Using the Weighted Score Algorithm

  • Kim, Joo-Young;Kim, Jin-Young;Lee, Kyung-Tae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.396-402
    • /
    • 2011
  • Aircraft combat survivability is an essential factor in the design of combat aircrafts that operate in an enemy air defense area. The combat aircrafts will be confronted with anti-aircraft artillery and/or surface-to-air missiles (SAM) from the ground, and their survivability can be divided into two categories: susceptibility and vulnerability. This article studies the prediction of susceptibility in the case of a one-on-one engagement between the combat aircraft and a surface-based threat. The weighted score method is suggested for the prediction of susceptibility parameters, and Monte Carlo simulations are carried out to draw qualitative interpretation of the susceptibility characteristics of combat aircraft systems, such as the F-16 C/D, and the hypersonic aircraft, which is under development in the United States, versus ground threat from the SAM SA-10.

Estimation of Geometric Mean for k Exponential Parameters Using a Probability Matching Prior

  • Kim, Hea-Jung;Kim, Dae Hwang
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • In this article, we consider a Bayesian estimation method for the geometric mean of $textsc{k}$ exponential parameters, Using the Tibshirani's orthogonal parameterization, we suggest an invariant prior distribution of the $textsc{k}$ parameters. It is seen that the prior, probability matching prior, is better than the uniform prior in the sense of correct frequentist coverage probability of the posterior quantile. Then a weighted Monte Carlo method is developed to approximate the posterior distribution of the mean. The method is easily implemented and provides posterior mean and HPD(Highest Posterior Density) interval for the geometric mean. A simulation study is given to illustrates the efficiency of the method.

A Bayesian Comparison of Two Multivariate Normal Genralized Variances

  • Kim, Hea-Jung
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.05a
    • /
    • pp.73-78
    • /
    • 2002
  • In this paper we develop a method for constructing a Bayesian HPD (highest probability density) interval of a ratio of two multivariate normal generalized variances. The method gives a way of comparing two multivariate populations in terms of their dispersion or spread, because the generalized variance is a scalar measure of the overall multivariate scatter. Fully parametric frequentist approaches for the interval is intractable and thus a Bayesian HPD(highest probability densith) interval is pursued using a variant of weighted Monte Carlo (WMC) sampling based approach introduced by Chen and Shao(1999). Necessary theory involved in the method and computation is provided.

  • PDF

Estimation of Design Rainfall by the Regional Frequency Analysis using Higher Probability Weighted Moments and GIS Techniques(l ) - On the method of L-moments- (고차확률가중모멘트법에 의한 지역화빈도분석과 GIS기법에 의한 설계강우량 추정(II) - L-모멘트법을 중심으로 -)

  • 이순혁;박종화;류경식
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.5
    • /
    • pp.70-82
    • /
    • 2001
  • This study was conducted to derive the regional design rainfall by the regional frequency analysis based on the regionalization of the precipitation suggested by the first report of this project. Using the L-moment ratios and Kolmogorov-Smirnov test, the underlying regional probability distribution was identified to be the Generalized extreme value distribution among applied distributions. Regional and at-site parameters of the generalized extreme value distribution were estimated by the linear combination of the probability weighted moments, L-moment. The regional and at-site analysis for the design rainfall were tested by Monte Carlo simulation. Relative root-mean-square error(RRMSE), relative bias(RBIAS) and relative reduction(RR) in RRMSE were computed and compared with those resulting from at-site Monte Carlo simulation. All show that the regional analysis procedure can substantially reduce the RRMSE, RBIAS and RR in RRMSE in the prediction of design rainfall. Consequently, optimal design rainfalls following the legions and consecutive durations were derived by the regional frequency analysis.

  • PDF