• Title/Summary/Keyword: Weighted Linear Optimization

Search Result 45, Processing Time 0.022 seconds

Optimal Discrete Systems using Time-Weighted Performance Index with Prescribed Closed-Loop Eigenvalues

  • Gwon, Bong-Hwan;Yun, Myeong-Jung
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.786-790
    • /
    • 1987
  • An optimization problem minimizing n given time-weighted performance index for discrete-time linear multi-input systems is investigated for the prespecified closed-loop eigenvalues. Necessary conditions for an optimality of the controller that satisfies the specified closed-loop eigenvalues are derived. A computational algorithm solving the optimal constant feedback gain is presented and a numerical example is given to show the effect of a time-weighted performance index on the transient responses.

  • PDF

Optimization of FCM-based Radial Basis Function Neural Network Using Particle Swarm Optimization (PSO를 이용한 FCM 기반 RBF 뉴럴 네트워크의 최적화)

  • Choi, Jeoung-Nae;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2108-2116
    • /
    • 2008
  • The paper concerns Fuzzy C-Means clustering based Radial Basis Function neural networks (FCM-RBFNN) and the optimization of the network is carried out by means of Particle Swarm Optimization(PSO). FCM-RBFNN is the extended architecture of Radial Basis Function Neural Network(RBFNN). In the proposed network, the membership functions of the premise part of fuzzy rules do not assume any explicit functional forms such as Gaussian, ellipsoidal, triangular, etc., so its resulting fitness values directly rely on the computation of the relevant distance between data points by means of FCM. Also, as the consequent part of fuzzy rules extracted by the FCM - RBFNN model, the order of four types of polynomials can be considered such as constant, linear, quadratic and modified quadratic. Weighted Least Square Estimator(WLSE) are used to estimates the coefficients of polynomial. Since the performance of FCM-RBFNN is affected by some parameters of FCM-RBFNN such as a specific subset of input variables, fuzzification coefficient of FCM, the number of rules and the order of polynomials of consequent part of fuzzy rule, we need the structural as well as parametric optimization of the network. In this study, the PSO is exploited to carry out the structural as well as parametric optimization of FCM-RBFNN. Moreover The proposed model is demonstrated with the use of numerical example and gas furnace data set.

A linear program approach for a global optimization problem of optimizing a linear function over an efficient set (글로벌최적화 문제인 유효해집합 위에서의 최적화 문제에 대한 선형계획적 접근방법)

  • 송정환
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.53-56
    • /
    • 2000
  • The problem ( Ρ ) of optimizing a linear function d$\^$T/x over the set of efficient set for a multiple objective linear program ( Μ ) is difficult because the efficient set is nonconvex. There some interesting properties between the objective linear vector d and the matrix of multiple objectives C and those properties lead us to establish criteria to solve ( Ρ ) with a linear program. In this paper we investigate a system of the linear equations C$\^$T/${\alpha}$=d and construct two linearly independent positive vectors ${\mu}$, ν such that ${\alpha}$=${\mu}$-ν. From those vectors ${\mu}$, ν, solving an weighted sum linear program for finding an efficient extreme point for the ( Μ ) is a way to get an optimal solution ( Ρ ). Therefore our theory gives an easy way of solving nonconvex program ( Ρ ) with a weighted sum linear program.

  • PDF

Redundant Robot Control by Neural Optimization Networks (신경망 최적화 회로에 의한 여유자유도를 갖는 로보트의 제어)

  • 현웅근;서일홍
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.6
    • /
    • pp.638-648
    • /
    • 1990
  • An effective resolved motion control method of redundant manipulators is proposed to minimize the energy consumption and to increase the dexterity while satisfying the physical actuator constraints. The method employs the neural optimization networks, where the computation of Jacobian matrix is not required. Specifically, end effector movement resulting from each joint differential motion is first separated into orthogonal and tangential components with respect to a given desired trajectory. Then the resolved motion is obtained by neural optimization networks in such a way that 1) linear combination of the orthogonal components should be null 2) linear combination of the tangential components should be the differential length of the desired trajectory, 3) differential joint motion limit is not violated, and 4) weighted sum of the square of each differential joint motion is minimized. Here the weighting factors are controlled by a newly defined joint dexterity measure as the ratio of the tangential and orthogonal components.

  • PDF

Bidirectional Link Resource Allocation Strategy in GFDM-based Multiuser SWIPT Systems

  • Xu, Xiaorong;Sun, Minghang;Zhu, Wei-Ping;Feng, Wei;Yao, Yingbiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.319-333
    • /
    • 2022
  • In order to enhance system energy efficiency, bidirectional link resource allocation strategy in GFDM-based multiuser SWIPT systems is proposed. In the downlink channel, each SWIPT user applies power splitting (PS) receiver structure in information decoding (ID) and non-linear energy harvesting (EH). In the uplink channel, information transmission power is originated from the harvested energy. An optimization problem is constructed to maximize weighted sum ID achievable rates in the downlink and uplink channels via bidirectional link power allocation as well as subcarriers and subsymbols scheduling. To solve this non-convex optimization problem, Lagrange duality method, sub-gradient-based method and greedy algorithm are adopted respectively. Simulation results show that the proposed strategy is superior to the fixed subcarrier scheme regardless of the weighting coefficients. It is superior to the heuristic algorithm in larger weighting coefficients scenario.

An investigation of non-linear optimization methods on composite structures under vibration and buckling loads

  • Akbulut, Mustafa;Sarac, Abdulhamit;Ertas, Ahmet H.
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.209-231
    • /
    • 2020
  • In order to evaluate the performance of three heuristic optimization algorithms, namely, simulated annealing (SA), genetic algorithm (GA) and particle swarm optimization (PSO) for optimal stacking sequence of laminated composite plates with respect to critical buckling load and non-dimensional natural frequencies, a multi-objective optimization procedure is developed using the weighted summation method. Classical lamination theory and first order shear deformation theory are employed for critical buckling load and natural frequency computations respectively. The analytical critical buckling load and finite element calculation schemes for natural frequencies are validated through the results obtained from literature. The comparative study takes into consideration solution and computational time parameters of the three algorithms in the statistical evaluation scheme. The results indicate that particle swarm optimization (PSO) considerably outperforms the remaining two methods for the special problem considered in the study.

Closed Walk Ferry Route Design for Wireless Sensor Networks

  • Dou, Qiang;Wang, Yong;Peng, Wei;Gong, Zhenghu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2357-2375
    • /
    • 2013
  • Message ferry is a controllable mobile node with large capacity and rechargeable energy to collect information from the sensors to the sink in wireless sensor networks. In the existing works, route of the message ferry is often designed from the solutions of the Traveling Salesman Problem (TSP) and its variants. In such solutions, the ferry route is often a simple cycle, which starts from the sink, access all the sensors exactly once and moves back to the sink. In this paper, we consider a different case, where the ferry route is a closed walk that contains more than one simple cycle. This problem is defined as the Closed Walk Ferry Route Design (CWFRD) problem in this paper, which is an optimization problem aiming to minimize the average weighted delay. The CWFRD problem is proved to be NP-hard, and the Integer Linear Programming (ILP) formulation is given. Furthermore, a heuristic scheme, namely the Initialization-Split-Optimization (ISO) scheme is proposed to construct closed walk routes for the ferry. The experimental results show that the ISO algorithm proposed in this paper can effectively reduce the average weighted delay compared to the existing simple cycle based scheme.

Multi -Criteria ABC Inventory Classification Using Context-Dependent DEA (컨텍스트 의존 DEA를 활용한 다기준 ABC 재고 분류 방법)

  • Park, Jae-Hun;Lim, Sung-Mook;Bae, Hye-Rim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.4
    • /
    • pp.69-78
    • /
    • 2010
  • Multi-criteria ABC inventory classification is one of the most widely employed techniques for efficient inventory control, and it considers more than one criterion for categorizing inventory items into groups of different importance. Recently, Ramanathan (2006) proposed a weighted linear optimization (WLO) model for the problem of multi-criteria ABC inventory classification. The WLO model generates a set of criteria weights for each item and assigns a normalized score to each item for ABC analysis. Although the WLO model is considered to have many advantages, it has a limitation that many items can share the same optimal efficiency score. This limitation can hinder a precise classification of inventory items. To overcome this deficiency, we propose a context-dependent DEA based method for multi-criteria ABC inventory classification problems. In the proposed model, items are first stratified into several efficiency levels, and then the relative attractiveness of each item is measured with respect to less efficient ones. Based on this attractiveness measure, items can be further discriminated in terms of their importance. By a comparative study between the proposed model and the WLO model, we argue that the proposed model can provide a more reasonable and accurate classification of inventory items.

Enhancing Focus Measurements in Shape From Focus Through 3D Weighted Least Square (3차원 가중최소제곱을 이용한 SFF에서의 초점 측도 개선)

  • Mahmood, Muhammad Tariq;Ali, Usman;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.66-71
    • /
    • 2019
  • In shape from focus (SFF) methods, the quality of image focus volume plays a vital role in the quality of 3D shape reconstruction. Traditionally, a linear 2D filter is applied to each slice of the image focus volume to rectify the noisy focus measurements. However, this approach is problematic because it also modifies the accurate focus measurements that should ideally remain intact. Therefore, in this paper, we propose to enhance the focus volume adaptively by applying 3-dimensional weighted least squares (3D-WLS) based regularization. We estimate regularization weights from the guidance volume extracted from the image sequences. To solve 3D-WLS optimization problem efficiently, we apply a technique to solve a series of 1D linear sub-problems. Experiments conducted on synthetic and real image sequences demonstrate that the proposed method effectively enhances the image focus volume, ultimately improving the quality of reconstructed shape.

Fundamental framework toward optimal design of product platform for industrial three-axis linear-type robots

  • Sawai, Kana;Nomaguchi, Yutaka;Fujita, Kikuo
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.157-164
    • /
    • 2015
  • This paper discusses an optimization-based approach for the design of a product platform for industrial three-axis linear-type robots, which are widely used for handling objects in manufacturing lines. Since the operational specifications of these robots, such as operation speed, working distance and orientation, weight and shape of loads, etc., will vary for different applications, robotic system vendors must provide various types of robots efficiently and effectively to meet a range of market needs. A promising step toward this goal is the concept of a product platform, in which several key elements are commonly used across a series of products, which can then be customized for individual requirements. However the design of a product platform is more complicated than that of each product, due to the need to optimize the design across many products. This paper proposes an optimization-based fundamental framework toward the design of a product platform for industrial three-axis linear-type robots; this framework allows the solution of a complicated design problem and builds an optimal design method of fundamental features of robot frames that are commonly used for a wide range of robots. In this formulation, some key performance metrics of the robot are estimated by a reducedorder model which is configured with beam theory. A multi-objective optimization problem is formulated to represent the trade-offs among key design parameters using a weighted-sum form for a single product. This formulation is integrated into a mini-max type optimization problem across a series of robots as an optimal design formulation for the product platform. Some case studies of optimal platform design for industrial three-axis linear-type robots are presented to demonstrate the applications of a genetic algorithm to such mathematical models.