• Title/Summary/Keyword: Weighted Least Square Estimator

Search Result 23, Processing Time 0.017 seconds

Design-based Properties of Least Square Estimators in Panel Regression Model (패널회귀모형에서 회귀계수 추정량의 설계기반 성질)

  • Kim, Kyu-Seong
    • Survey Research
    • /
    • v.12 no.3
    • /
    • pp.49-62
    • /
    • 2011
  • In this paper we investigate design-based properties of both the ordinary least square estimator and the weighted least square estimator for regression coefficients in panel regression model. We derive formulas of approximate bias, variance and mean square error for the ordinary least square estimator and approximate variance for the weighted least square estimator after linearization of least square estimators. Also we compare their magnitudes each other numerically through a simulation study. We consider a three years data of Korean Welfare Panel Study as a finite population and take household income as a dependent variable and choose 7 exploratory variables related household as independent variables in panel regression model. Then we calculate approximate bias, variance, mean square error for the ordinary least square estimator and approximate variance for the weighted least square estimator based on several sample sizes from 50 to 1,000 by 50. Through the simulation study we found some tendencies as follows. First, the mean square error of the ordinary least square estimator is getting larger than the variance of the weighted least square estimator as sample sizes increase. Next, the magnitude of mean square error of the ordinary least square estimator is depending on the magnitude of the bias of the estimator, which is large when the bias is large. Finally, with regard to approximate variance, variances of the ordinary least square estimator are smaller than those of the weighted least square estimator in many cases in the simulation.

  • PDF

Approximate Variance of Least Square Estimators for Regression Coefficient under Inclusion Probability Proportional to Size Sampling (포함확률비례추출에서 회귀계수 최소제곱추정량의 근사분산)

  • Kim, Kyu-Seong
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.1
    • /
    • pp.23-32
    • /
    • 2012
  • This paper deals with the bias and variance of regression coefficient estimators in a finite population. We derive approximate formulas for the bias, variance and mean square error of two estimators when we select a fixed-size inclusion probability proportional to the size sample and then estimate regression coefficients by the ordinary least square estimator as well as the weighted least square estimator based on the selected sample data. Necessary and sufficient conditions for the comparison of the two estimators in terms of variance and mean square error are suggested. In addition, a simple example is introduced to numerically compare the variance and mean square error of the two estimators.

Intelligent fuzzy weighted input estimation method for the input force on the plate structure

  • Lee, Ming-Hui;Chen, Tsung-Chien
    • Structural Engineering and Mechanics
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2010
  • The innovative intelligent fuzzy weighted input estimation method which efficiently and robustly estimates the unknown time-varying input force in on-line is presented in this paper. The algorithm includes the Kalman Filter (KF) and the recursive least square estimator (RLSE), which is weighted by the fuzzy weighting factor proposed based on the fuzzy logic inference system. To directly synthesize the Kalman filter with the estimator, this work presents an efficient robust forgetting zone, which is capable of providing a reasonable compromise between the tracking capability and the flexibility against noises. The capability of this inverse method are demonstrated in the input force estimation cases of the plate structure system. The proposed algorithm is further compared by alternating between the constant and adaptive weighting factors. The results show that this method has the properties of faster convergence in the initial response, better target tracking capability, and more effective noise and measurement bias reduction.

Estimation of structure system input force using the inverse fuzzy estimator

  • Lee, Ming-Hui
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.351-365
    • /
    • 2011
  • This study proposes an inverse estimation method for the input forces of a fixed beam structural system. The estimator includes the fuzzy Kalman Filter (FKF) technology and the fuzzy weighted recursive least square method (FWRLSM). In the estimation method, the effective estimator are accelerated and weighted by the fuzzy accelerating and weighting factors proposed based on the fuzzy logic inference system. By directly synthesizing the robust filter technology with the estimator, this study presents an efficient robust forgetting zone, which is capable of providing a reasonable trade-off between the tracking capability and the flexibility against noises. The period input of the fixed beam structure system can be effectively estimated by using this method to promote the reliability of the dynamic performance analysis. The simulation results are compared by alternating between the constant and adaptive and fuzzy weighting factors. The results demonstrate that the application of the presented method to the fixed beam structure system is successful.

Identification of Fuzzy-Radial Basis Function Neural Network Based on Mountain Clustering (Mountain Clustering 기반 퍼지 RBF 뉴럴네트워크의 동정)

  • Choi, Jeoung-Nae;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.3
    • /
    • pp.69-76
    • /
    • 2008
  • This paper concerns Fuzzy Radial Basis Function Neural Network (FRBFNN) and automatic rule generation of extraction of the FRBFNN by means of mountain clustering. In the proposed network, the membership functions of the premise part of fuzzy rules do not assume any explicit functional forms such as Gaussian, ellipsoidal, triangular, etc., so its resulting fitness values (degree of membership) directly rely on the computation of the relevant distance between data points. Also, we consider high-order polynomial as the consequent part of fuzzy rules which represent input-output characteristic of sup-space. The number of clusters and the centers of clusters are automatically generated by using mountain clustering method based on the density of data. The centers of cluster which are obtained by using mountain clustering are used to determine a degree of membership and weighted least square estimator (WLSE) is adopted to estimate the coefficients of the consequent polynomial of fuzzy rules. The effectiveness of the proposed model have been investigated and analyzed in detail for the representative nonlinear function.

  • PDF

Preliminary test estimation method accounting for error variance structure in nonlinear regression models (비선형 회귀모형에서 오차의 분산에 따른 예비검정 추정방법)

  • Yu, Hyewon;Lim, Changwon
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.4
    • /
    • pp.595-611
    • /
    • 2016
  • We use nonlinear regression models (such as the Hill Model) when we analyze data in toxicology and/or pharmacology. In nonlinear regression models an estimator of parameters and estimation of measurement about uncertainty of the estimator are influenced by the variance structure of the error. Thus, estimation methods should be different depending on whether the data are homoscedastic or heteroscedastic. However, we do not know the variance structure of the error until we actually analyze the data. Therefore, developing estimation methods robust to the variance structure of the error is an important problem. In this paper we propose a method to estimate parameters in nonlinear regression models based on a preliminary test. We define an estimator which uses either the ordinary least square estimation method or the iterative weighted least square estimation method according to the results of a simple preliminary test for the equality of the error variance. The performance of the proposed estimator is compared to those of existing estimators by simulation studies. We also compare estimation methods using real data obtained from the National Toxicology program of the United States.

Design and Analysis of TSK Fuzzy Inference System using Clustering Method (클러스터링 방법을 이용한 TSK 퍼지추론 시스템의 설계 및 해석)

  • Oh, Sung-Kwun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.3
    • /
    • pp.132-136
    • /
    • 2014
  • We introduce a new architecture of TSK-based fuzzy inference system. The proposed model used fuzzy c-means clustering method(FCM) for efficient disposal of data. The premise part of fuzzy rules don't assume any membership function such as triangular, gaussian, ellipsoidal because we construct the premise part of fuzzy rules using FCM. As a result, we can reduce to architecture of model. In this paper, we are able to use four types of polynomials as consequence part of fuzzy rules such as simplified, linear, quadratic, modified quadratic. Weighed Least Square Estimator are used to estimates the coefficients of polynomial. The proposed model is evaluated with the use of Boston housing data called Machine Learning dataset.

Development of The Robust State Estimator using Linear Programming (선형계획법을 이용한 견실한 상태추정기의 개발에 관한 연구)

  • Lim, Jae-Sup;Kwon, Hyung-Seok;Kim, Hong-Rae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.181-183
    • /
    • 2001
  • This paper presents a robust power system state estimator using linear programming(LP). LP state estimators minimize the weighted sum of the absolute values of the measurement residuals. In this paper, WLS(weighted least square) and WLAV(weighted least absolute value) state estimators are run with same measurement sets including bad data in order to compare the robustness to bad data and convergence characteristics of the two methods. Simulations with three test cases are performed and the results are presented, using IEEE 14 bus system.

  • PDF

Structural Design of FCM-based Fuzzy Inference System : A Comparative Study of WLSE and LSE (FCM기반 퍼지추론 시스템의 구조 설계: WLSE 및 LSE의 비교 연구)

  • Park, Wook-Dong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.981-989
    • /
    • 2010
  • In this study, we introduce a new architecture of fuzzy inference system. In the fuzzy inference system, we use Fuzzy C-Means clustering algorithm to form the premise part of the rules. The membership functions standing in the premise part of fuzzy rules do not assume any explicit functional forms, but for any input the resulting activation levels of such radial basis functions directly depend upon the distance between data points by means of the Fuzzy C-Means clustering. As the consequent part of fuzzy rules of the fuzzy inference system (being the local model representing input output relation in the corresponding sub-space), four types of polynomial are considered, namely constant, linear, quadratic and modified quadratic. This offers a significant level of design flexibility as each rule could come with a different type of the local model in its consequence. Either the Least Square Estimator (LSE) or the weighted Least Square Estimator (WLSE)-based learning is exploited to estimate the coefficients of the consequent polynomial of fuzzy rules. In fuzzy modeling, complexity and interpretability (or simplicity) as well as accuracy of the obtained model are essential design criteria. The performance of the fuzzy inference system is directly affected by some parameters such as e.g., the fuzzification coefficient used in the FCM, the number of rules(clusters) and the order of polynomial in the consequent part of the rules. Accordingly we can obtain preferred model structure through an adjustment of such parameters of the fuzzy inference system. Moreover the comparative experimental study between WLSE and LSE is analyzed according to the change of the number of clusters(rules) as well as polynomial type. The superiority of the proposed model is illustrated and also demonstrated with the use of Automobile Miles per Gallon(MPG), Boston housing called Machine Learning dataset, and Mackey-glass time series dataset.

Alternative robust estimation methods for parameters of Gumbel distribution: an application to wind speed data with outliers

  • Aydin, Demet
    • Wind and Structures
    • /
    • v.26 no.6
    • /
    • pp.383-395
    • /
    • 2018
  • An accurate determination of wind speed distribution is the basis for an evaluation of the wind energy potential required to design a wind turbine, so it is important to estimate unknown parameters of wind speed distribution. In this paper, Gumbel distribution is used in modelling wind speed data, and alternative robust estimation methods to estimate its parameters are considered. The methodologies used to obtain the estimators of the parameters are least absolute deviation, weighted least absolute deviation, median/MAD and least median of squares. The performances of the estimators are compared with traditional estimation methods (i.e., maximum likelihood and least squares) according to bias, mean square deviation and total mean square deviation criteria using a Monte-Carlo simulation study for the data with and without outliers. The simulation results show that least median of squares and median/MAD estimators are more efficient than others for data with outliers in many cases. However, median/MAD estimator is not consistent for location parameter of Gumbel distribution in all cases. In real data application, it is firstly demonstrated that Gumbel distribution fits the daily mean wind speed data well and is also better one to model the data than Weibull distribution with respect to the root mean square error and coefficient of determination criteria. Next, the wind data modified by outliers is analysed to show the performance of the proposed estimators by using numerical and graphical methods.