• Title/Summary/Keyword: Weighted Fuzzy Membership Functions

Search Result 43, Processing Time 0.019 seconds

Finding Fuzzy Rules for IRIS by Neural Network with Weighted Fuzzy Membership Function

  • Lim, Joon Shik
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.211-216
    • /
    • 2004
  • Fuzzy neural networks have been successfully applied to analyze/generate predictive rules for medical or diagnostic data. However, most approaches proposed so far have not considered the weights for the membership functions much. This paper presents a neural network with weighted fuzzy membership functions. In our approach, the membership functions can capture the concentrated and essential information that affects the classification of the input patterns. To verify the performance of the proposed model, well-known Iris data set is performed. According to the results, the weighted membership functions enhance the prediction accuracy. The architecture of the proposed neural network with weighted fuzzy membership functions and the details of experimental results for the data set is discussed in this paper.

Extracting Wisconsin Breast Cancer Prediction Fuzzy Rules Using Neural Network with Weighted Fuzzy Membership Functions (가중 퍼지 소속함수 기반 신경망을 이용한 Wisconsin Breast Cancer 예측 퍼지규칙의 추출)

  • Lim Joon Shik
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.717-722
    • /
    • 2004
  • This paper presents fuzzy rules to predict diagnosis of Wisconsin breast cancer using neural network with weighted fuzzy membership functions (NNWFM). NNWFM is capable of self-adapting weighted membership functions to enhance accuracy in prediction from the given clinical training data. n set of small, medium, and large weighted triangular membership functions in a hyperbox are used for representing n set of featured input. The membership functions are randomly distributed and weighted initially, and then their positions and weights are adjusted during learning. After learning, prediction rules are extracted directly from the enhanced bounded sums of n set of weighted fuzzy membership functions. Two number of prediction rules extracted from NNWFM outperforms to the current published results in number of rules and accuracy with 99.41%.

Minimum Fuzzy Membership Function Extraction for Automatic Premature Ventricular Contraction Detection (자동 조기심실수축 탐지를 위한 최소 퍼지소속함수의 추출)

  • Lim, Joon-Shik
    • Journal of Internet Computing and Services
    • /
    • v.8 no.1
    • /
    • pp.125-132
    • /
    • 2007
  • This paper presents an approach to detect premature ventricular contractions(PVC) using the neural network with weighted fuzzy membership functions(NEWFM), NEWFM classifies normal and PVC beats by the trained weighted fuzzy membership functions using wavelet transformed coefficients extracted from the MIT-BIH PVC database. The eight most important coefficients of d3 and d4 are selected by the non-overlap area distribution measurement method. The selected 8 coefficients are used for 3 data sets showing reliable accuracy rates 99,80%, 99,21%, and 98.78%, respectively, which means the selected input features are less dependent to the data sets. The ECG signal segments and fuzzy membership functions of the 8 coefficients enable input features to interpret explicitly.

  • PDF

Classification of Epilepsy Using Distance-Based Feature Selection (거리 기반의 특징 선택을 이용한 간질 분류)

  • Lee, Sang-Hong
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.321-327
    • /
    • 2014
  • Feature selection is the technique to improve the classification performance by using a minimal set by removing features that are not related with each other and characterized by redundancy. This study proposed new feature selection using the distance between the center of gravity of the bounded sum of weighted fuzzy membership functions (BSWFMs) provided by the neural network with weighted fuzzy membership functions (NEWFM) in order to improve the classification performance. The distance-based feature selection selects the minimum features by removing the worst features with the shortest distance between the center of gravity of BSWFMs from the 24 initial features one by one, and then 22 minimum features are selected with the highest performance result. The proposed methodology shows that sensitivity, specificity, and accuracy are 97.7%, 99.7%, and 98.7% with 22 minimum features, respectively.

Extracting Minimized Feature Input And Fuzzy Rules Using A Fuzzy Neural Network And Non-Overlap Area Distribution Measurement Method (퍼지신경망과 비중복면적 분산 측정법을 이용한 최소의 특징입력 및 퍼지규칙의 추출)

  • Lim Joon-Shik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.599-604
    • /
    • 2005
  • This paper presents fuzzy rules to predict diagnosis of Wisconsin breast cancer with minimized number of feature in put using the neural network with weighted fuzzy membership functions (NEWFM) and the non-overlap area distribution measurement method. NEWFM is capable of self-adapting weighted membership functions from the given the Wisconsin breast cancer clinical training data. n set of small, medium, and large weighted triangular membership functions in a hyperbox are used for representing n set of featured input. The membership functions are randomly distributed and weighted initially, and then their positions and weights are adjusted during learning. After learning, prediction rules are extracted directly from n set of enhanced bounded sums of n set of small, medium, and large weighted fuzzy membership functions. Then, the non-overlap area distribution measurement method is applied to select important features by deleting less important features. Two sets of prediction rules extracted from NEWFM using the selected 4 input features out of 9 features outperform to the current published results in number of set of rules, number of input features, and accuracy with 99.71%.

Design of a Classifier Based on Supervised Learning Using Fuzzy Membership Function and Weighted Average (퍼지 소속도 함수와 가중치 평균을 이용한 지도 학습 기반 분류기 설계)

  • Woo, Young Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.508-514
    • /
    • 2021
  • In this paper, to propose a classifier based on supervised learning, three types of fuzzy membership functions that determine the membership of each feature of classification data are proposed. In addition, the possibility of improving the classifier performance was suggested by using the average value calculation method used in the process of deriving the classification result using the average value of the membership degrees for each feature, not by using a simple arithmetic average, but by using a weighted average using various weights. To experiment with the proposed methods, three standard data sets were used: Iris, Ecoli, and Yeast. As a result of the experiment, it was confirmed that evenly excellent classification performance can be obtained for data sets of different characteristics. It was confirmed that better classification performance is possible through improvement of fuzzy membership functions and the weighted average methods.

Automatic Premature Ventricular Contraction Detection Using NEWFM (NEWFM을 이용한 자동 조기심실수축 탐지)

  • Lim Joon-Shik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.378-382
    • /
    • 2006
  • This paper presents an approach to detect premature ventricular contractions(PVC) using the neural network with weighted fuzzy membership functions(NEWFM). NEWFM classifies normal and PVC beats by the trained weighted fuzzy membership functions using wavelet transformed coefficients extracted from the MIT-BIH PVC database. The two most important coefficients are selected by the non-overlap area distribution measurement method to minimize the classification rules that show PVC classification rate of 99.90%. By Presenting locations of the extracted two coefficients based on the R wave location, it is shown that PVC can be detected using only information of the two portions.

Reliability Analysis of Fuzzy Systems With Weighted Components Using Vague Sets (모호집합을 이용한 가중 구성요소를 갖는 퍼지시스템의 신뢰도 분석)

  • Cho, Sang-Yeop;Park, Sa-Joon
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.11
    • /
    • pp.979-985
    • /
    • 2006
  • In the conventional researches, the reliabilities of the fuzzy system are represented and analyzed by real values between zero and one, fuzzy numbers, intervals of confidence, etc. In this paper, we present a method to represent and analyze the reliabilities of the weighted components of the fuzzy system and the weights reflected on their importance based on vague sets defined in the universe of discourse [0, 1]. The vague set is represented as the interval consisted of the truth-membership functions and the false-membership functions, therefore it can allow the reliabilities and the weights of a fuzzy system to represent in a more flexible manner. The proposed method considers the weights of the weighted components in the fuzzy systems, its reliability analysis is more flexible and effective than the conventional methods.

Fuzzy Group Decision Making for Multiple Decision Maker-Multiple Objective Programming Problems

  • Yano, Hitoshi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.380-383
    • /
    • 2003
  • In this paper, we propose a fuzzy group decision making method for multiple decision maker-multiple objective programming problems to obtain the agreeable solution. In the proposed method, considering the vague nature of human subjective judgement it is assumed that each of multiple decision makers has a fuzzy goal for each of his/her own objective functions. After eliciting the membership functions from the decision makers for their fuzzy goals, total M-Pareto optimal solution concept is defined in membership spaces in order to deal with multiple decision maker-multiple objective programming problems. For generating a candidate of the agreeable solution which is total M-Pareto optimal, the extended weighted minimax problem is formulated and solved for some weighting vector which is specified by the decision makers in their subjective manner, Given the total M-Pareto optimal solution, each of the derision makers must either be satisfied with the current values of the membership functions, or update his/her weighting vector, However, in general, it seems to be very difficult to find the agreeable solution with which all of the decision makers are satisfied perfectly because of the conflicts between their membership functions. In the proposed method, each of the decision makers is requested to estimate the degree of satisfaction for the candidate of the agreeable solution. Using the estimated values or satisfaction of each of the decision makers, the core concept is desnfied, which is a set of undominated candidates. The interactive algorithm is developed to obtain the agreeable solution which satisfies core conditions.

  • PDF

Detecting Ventricular Tachycardia/Fibrillation Using Neural Network with Weighted Fuzzy Membership Functions and Wavelet Transforms (가중 퍼지소속함수 기반 신경망과 웨이블릿 변환을 이용한 심실 빈맥/세동 검출)

  • Shin, Dong-Kun;Zhang, Zhen-Xing;Lee, Sang-Hong;Lim, Joon-S.;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.7
    • /
    • pp.19-26
    • /
    • 2009
  • This paper presents an approach to classify normal and ventricular tachycardia/fibrillation(VT/VF) from the Creighton University Ventricular Tachyarrhythmia Database(CUDB) using the neural network with weighted fuzzy membership functions(NEWFM) and wavelet transforms. In the first step, wavelet transforms are used to obtain the detail coefficients at levels 3 and 4. In the second step, all of detail coefficients d3 and d4 are classified into four intervals, respectively, and then the standard deviations of the specific intervals are used as eight numbers of input features of NEWFM. NEWFM classifies normal and VT/VF beats using eight numbers of input features, and then the accuracy rate is 90.1%.