• Title/Summary/Keyword: Weight kinetics

Search Result 210, Processing Time 0.027 seconds

Purification and Characterization of High-Molecular-Weight $\beta$-Glucosidase from Trichoderma koningii (Trichoderma koningii가 생성하는 고분자량 $\beta$-glucosidase의 정제 및 특성)

  • 맹필재;정춘수;하영칠;홍순우
    • Korean Journal of Microbiology
    • /
    • v.24 no.3
    • /
    • pp.251-262
    • /
    • 1986
  • High-molecular-weight ${\beta}-glucosidase$ (EC 3.2.1.21) was purified from the culture filtrate of Trichoderma koningii through a four-step procedure including chromatography on Bio-Gel P-150, DEAE-Sephadex A-50 and SP-Sephadex C-50; and chromatofocusing on Polybuffer exchanger PBE 94. The molecular weight of the enzyme was determined to be about 101,000 by SDS-polyacrylamide gel electrophoreses, and the isoelectric point was estimated to be 4.96 by analytical isoelectric focusing. The temperature optimum for activity was about $55^{\circ}C$, and the pH optimumwas 3.5. The enzyme was considerably thermostable, for no loss of activity was observed when the enzyme was preincubated at $60^{\circ}C$ for 5h. Km values for cellobiose, gentiobiose, sophorose, salicin and $p-nitrophenyl-{\betha}-D-glucoside$ were 99.2, 14.7, 7.09, 3.15 and 0.70 mM, respectively, which indicates that the enzyme has much higher affinity towards $p-nitrophenyl-{\betha}-D-glucoside$ than towards the other substrates, especially cellobiose. Substrate inhibition by $p-nitrophenyl-{\betha}-D-glucoside$ and salicin was observed at the conecntrations exceeding 5mM. Gluconolactone was a powerful inhibitor against the action of the enzyme on $p-nitrophenyl-{\betha}-D-glucoside\;(K_i\;37.9\;{\mu}M)$, wherease glucose was much less effective ($K_i$ 1.95 mM). Inhibition was of the competitive type in each case. Transglucosylation activity was detected shen the readtion products formed from $p-nitrophenyl-{\betha}-D-glucoside$ by the enzyme were analysed using high-performance liquid chromatography.

  • PDF

A Study of Dewatering Phenomena of Potato Slice Cytorrhysed by High Molecules (고분자 용액의 세포 압착 현상에 의한 감자 절편의 탈수 현상에 관한 연구)

  • Choi, Dong-Won;Shin, Hae-Hun;Kim, Jong-Geu
    • The Korean Journal of Food And Nutrition
    • /
    • v.19 no.4
    • /
    • pp.358-365
    • /
    • 2006
  • To study simultaneous water and solute transport kinetics during soaking in concentrated solution, the influence of the concentration and molecular weight of the solute(polyethylene glycol(PEG) and NaCl) in the soaking solution and the temperature on the water loss and solute gain rates were observed by using a model vegetable tissue(potato). When potato slices$(4cm{\times}4cm{\times}0.1cm)$ soaked in 60% PEG solutions, the water loss rate of the early phase decreased with increasing of the molecular weight of PEG from 200 to 6,000, while the final water loss increased with increasing the molecular weight of PEG and it reached to 80%. The cell wall of potato tissue was permeable to NaCl and PEGs of which average molecular weight is smaller than 400 but it was not permeable to PEG 600 and larger molecules. PEG which has average molecular weight below 600 induced plasmolysis and those above 600 induced cytorrhysis. The water loss rate of potato sample soaked in smaller molecular weight PEG solution was faster than those soaked in higher molecular weight PEG solution before cytorrhysis happened. The water loss rate was reversed after cytorrhysis happened. The volume change of potato within the first 60 minutes was larger in low molecular PEG solution but the final ratio of decreasing volume was larger in high molecular PEG solutions. In PEG 200 solution, the potato tissue was slightly shrinked without shape change. However, in PEG 4,000 solution, volume of potato was reduced significantly and potato tissue was twisted.

Biological Treatment of Ethylene Glycol in Polyester Weight-Loss Wastewater Using Jet-Loop Reactor (Jet-Loop Reactor를 이용한 Polyester 감량폐수중 Ethylene Glycol의 생물학적 처리)

  • 류원률;최장승;조무환
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.119-123
    • /
    • 1999
  • A jet-loop reactor was used for the biological treatment of ethylene glycol(EG) which is a main component of polyester weight-loss wastewater, and is difficult to be removed by physicochemical treatments. Volumetric oxygen coefficient(kLa) of jet-loop reactor was significantly larfgeer that of air-lift reactor. When organic loading rates of synthetic polyester weight-loss wastewater were 2.64 $kgOD_{Mn}/m^3$.day and 3.07 $kgCOD_{Cr}/m^3$.day, the effluent concentrations were measured as 154 $mgCOD_{Mn}/L$ and 156$mgCOD_{Cr}/L$, and removal efficiencies were found as 93%and 93.6%, respectively. The specific removal rate was proportionally increased from 0.25 to 1.60 $kgCOD_{Mn}$-removed/kgMLVSS.day as specific loading rate was increased from 0.25 to 1.72 $kgCOD_{Mn}$/kgMLVSS.day. Also, kinetics constants such as $K_s$, k, $K_d$, and Y were estimated as 89 mg/L, $0.05 hr^{-1}$, 0.1$day^{-1}$ and 0.78 respectively. When the organic loading rates of real polyester weight-loss wastewater were 2.64 $kgOD_{Mn}/m^3$. and 5.24 $kgCOD_{Cr}/m^3$. day, the effluent concentrations were measured as 150 $mgCOD_{Mn}$/L, and 306 $mgCOD_{Cr}$/L, and removal efficiencies were found as 93.2% and 93%, respectively. This study demonstrated that EG in the wastewater could be efficiently removed biologically using a jet-loop reactor.

  • PDF

Synthesis and Characterization of High Molecular Weight Biodegradable Polyoxalate (고분자량 생분해성 폴리옥살레이트의 합성과 특성분석)

  • Kim, Se-Ho;Yoo, Han-Na;Khang, Gil-Son;Lee, Dong-Won
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.547-552
    • /
    • 2010
  • Biodegradable polymers have gained enormous attentions in the pharmaceutical and biomedical applications, especially in drug delivery. In this work, we report the synthesis and characteristics of high molecular weight polyoxalate with ~75000 Da. Hydrolytic degradation kinetics and degradation products were characterized by nuclear magnetic resonance and gel permeation chromatography. Polyoxalate is a semicrystalline and thermally stable polymer with a glass transition temperature of ${\sim}35^{\circ}C$, which is suitable for drug delivery applications. The hydrophobic nature of polyoxalate allows it to be formulated into nanoparticles and encapsulate drugs using a conventional oil-in-water emulsion/solvent displacement method. Polyoxalate nanoparticles also exhibited excellent cytotoxicity profiles. It can be suggested that polyoxalate has great potential for numerous biomedical and pharmaceutical applications.

Kinetic Analysis of Golf Fat Shot (골프 Fat shot에 대한 운동역학적 분석)

  • Sohn, Jee-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.10
    • /
    • pp.523-532
    • /
    • 2013
  • When the golf club hits the ground prior to making contact with the golf ball, we define it as 'fat shot'. The aim of this research was to investigate the difference between normal shot and fat shot in golf. Five candidates playing as recreational golfer participated in this research and they were all right-handed people. Time phase between each event, wrist cocking angle, elbow extension-flexion angle, backswing height, pelvis angle, thorax angle, L-GRF, R-GRF, pelvis linear velocity, pelvis angular velocity and COG path were calculated. For statistical analysis the paired T-test was used. An early un-cocking, an early right elbow extension and impact with leaving their weight behind foot were not reasons of fat shot. Backswing height, X-Factor, pelvis angle and thorax rotation angle were not different between normal shot and fat shot. But we could find a pattern of abrupt pelvic movement and weight shift to target direction just before impact in case of fat shot. In addition fat shot showed time-delayed and small value of pelvis linear velocity pattern to upward during downswing phase as against normal shot.

Kinetics of Pyrolysis Degradation of Cured Phenol Resin (SC-1008) (I). (경화된 페놀 수지 (SC-1008)의 열분해 반응에 관한 연구(I).)

  • 김연철;강희철;예병한;배주찬
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.137-144
    • /
    • 1996
  • The kinetic coefficients far decomposition of the cured phenol resin (SC-1008) using a modified Arrhenius relationship have been determined from thermogavimetric analyses (TGA). The kinetic parameters were determined by multiple heating rate technique developed by Freideman and Henderson. Weight loss (decomposition) and weight loss rate (decomposition rate)were measured and recorded for three heating rates; $5^{\circ}C$/min ,$10^{\circ}C$/min, and $20^{\circ}C$/min. Relatively good agreement was obtained between measured and calculated decomposition as a function of temperature. By separating the reaction, the reaction order and pre exponential factor become empirical parameters which provide a "best fit" of the data. However, this method yields an extremely accurate reproduction of the thermograms over a wide range of heating rates. This is the desired result for kinetic parameters used in thermal models.al models.

  • PDF

Depolymerization of PET by Ethylene Glycol (에틸렌글리콜을 이용한 PET 해중합 특성)

  • Hwang, Hwidong;Kim, Bokyung;Woo, Daesik;Han, Myungwan
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.683-687
    • /
    • 2009
  • A method for depolymerization of PET by catalyzed glycolysis with an excess ethylene glycol(EG) to recover bis-hydroxyethyl terephthalate(BHET) was investigated. The product was analyzed by high-performance liquid chromatography(HPLC). Effects of operation variables such as reaction temperature, reaction time, EG/PET weight ratio were examined and kinetics of the glycolysis was studied. High temperature increases the rate of depolymerization and the yield of BHET. But, repolymerization rate was also high at too high temperature and the yield at $250^{\circ}C$ was shown to be lower than that at $230^{\circ}C$. First order reaction model was proposed to describe the glycolysis reaction. Activation energies for the reaction were obtained to be 37.8 kJ/mol above $210^{\circ}C$ and 149.6 kJ/mol below $210^{\circ}C$, which shows the glycolysis reaction is a multiple reaction. A maximum yield of BHET of 71% was achieved at a reaction temperature of $230^{\circ}C$ for 6 hr with an EG/PET weight ratio 4.

Uptake and Loss Kinetics of Silver in the Asian Clam, Potamocorbula amurensis and Balthic Clam, Macoma balthica: Effects of Body Size and Salinity (Potamocorbula amurensis와 Macoma balthica의 개체의 크기와 염분이 은의 흡수 및 배출에 미치는 영향)

  • Choi, Tae-Seob;Lee, Jung-Suk;Lee, Byeong-Gweon;Kim, Kwang-Young
    • The Korean Journal of Malacology
    • /
    • v.21 no.1
    • /
    • pp.47-56
    • /
    • 2005
  • A series of radiotracer experiments were employed to quantitatively compare the biokinetics of uptake from the dissolved phase (influx rates), uptake from the various types of food source (assimilation efficiency), and loss (efflux) of Ag between Potamocorbula amurensis and Macoma balthica. Simultaneously, influx rates of dissolved Cd in both clams were determined to compare with those of Ag. Effects of salinity on influx rates were evaluated in these 2 euryhaline species, as were effects of clam size. Influx rate of Ag and Cd (${\mu}g g^{-1}$ [dry wt.] $d^{-1}$) increased linearly with metal concentrations. Influx rates of Ag in both clams were 3 to 4 times those of Cd. Absolute influx rates of the 2 metals were 4 to 5 times greater in P. amurensis than M. balthica, probably because of differences in biological attributes (i.e. clearance rate or gill surface area). As salinity was reduced from 20 to 2.5 psu, the influx rate of Cd in P. amurensis increased 4-fold and that of Ag increased 6-fold, consistent with expected changes in speciation. Weight-specific metal influx rates (${\mu}g g^{-1}$ [dry wt.] $d^{-1}$) were negatively correlated with the tissue dry weight of the clams, but most rate constants determining physiological turnover of assimilated metals were not affected by clam size.

  • PDF

Effect of Cyclohexane Treatment on Serum Level of Glutathione S-Transferase Activity in Liver Damaged Rats ($CCl_4$ 에 의한 간손상 모델 실험동물에 있어서 cyclohexane 투여가 혈청 glutathione S-transferase 활성에 미치는 영향)

  • 오정대;윤종국
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.2
    • /
    • pp.80-86
    • /
    • 2003
  • To evaluate the effect of cyclohexane(CH) treatment on the serum levels of glutathion S-transferase(GST) activity in liver damaged animals, damaged liver was induced with pretreatment of 50% $CCl_4$ dissolved in olive oil (0.1 m1/100g body weight) intraperitoneally 17 times every other day. To $CCl_4$-treated rats, CH (1.56 g/kg body weight, i.p) was injected once and then the animals were sacrificed at 4 hours after injection of CH. The $CCl_4$-treated animals were identified as severe liver damage on the basis of liver functional findings, 1,e, increased serum levels of alanine aminotransferase(ALT), alkaline phosphate(ALP) and xanthine oxidase(XO) activities. On the other hand, $CCl_4$-treated animals injected with CH once($CCl_4$-pretreated animals) showed more decreased serum levels of ALT and XO, and more increased those of ALP rather than $CCl_4$-treated animals. In case of comparing the GST with ALT activity in liver, both $CCl_4$-treated and pretreated animals showed similar changing pattern of enzyme actvity. Especially $CCl_4$-pretreated animals showed significantly increased serum level of GST actvity compared with the $CCl_4$-treated those, whereas those of ALT showed reversed tendency. In aspects of GST enzyme kinetics, $CCl_4$-pretreated animals showed higher Vmax of liver GST enzyme than $CCl_4$-treated animals. In conclusion, injection of CH to the liver damaged rats led to enhanced liver damage and more increased activity of serum GST which may be chiefly caused by the enzyme induction.

Kinetic Analyses on Thermal Degradation of Epoxy Based Adhesive for Packaging Application (센서 패키지용 고분자 접착제의 열화 거동 분석)

  • Kim, Yeong K.;Lee, Yoon-Sun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.67-73
    • /
    • 2017
  • An analysis of thermal degradation of epoxy based adhesive performed by thermogravimetry tests are presented in this study. Six different heating rates were employed for the weight change measurements. Based on the data, an Arrhenius type modeling equation was developed by calculating activation energies and proportional constants, and $n^{th}$ polynomial function was adopted to predict the weight change rates. The prediction results by the modeling was compared with the data using the average activation energy. It was found that the activation energy at the each heating rate was not same due to the different degradation kinetics, especially at the high heating rate. To overcome this pitfall, a new approach using exponential function series was introduced and employed. The calculation results showed very good agreements with the test data regardless of the heating rates.