• Title/Summary/Keyword: Weight estimating system

Search Result 75, Processing Time 0.028 seconds

Risk assessment for inland flooding in a small urban catchment : Focusing on the temporal distribution of rainfall and dual drainage model (도시 소유역 내 내수침수 위험도 평가 : 강우 시간분포 및 이중배수체계 모형을 중심으로)

  • Lee, Jaehyun;Park, Kihong;Jun, Changhyun;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.389-403
    • /
    • 2021
  • In this study, dual drainage system based runoff model was established for W-drainage area in G-si, and considering the various rainfall characteristics determined using Huff and Mononobe methods, the degree of flooding in the target area was analyzed and the risk was compared and analyzed through the risk matrix method. As a result, the Monobe method compared to the Huff method was analyzed to be suitable analysis for flooding of recent heavy rain, and the validity of the dynamic risk assessment considering the weight of the occurrence probability as the return period was verified through the risk matrix-based analysis. However, since the definition and estimating criteria of the flood risk matrix proposed in this study are based on the return period for extreme rainfall and the depth of flooding according to the results of applying the dual drainage model, there is a limitation in that it is difficult to consider the main factors which are direct impact on inland flooding such as city maintenance and life protection functions. In the future, if various factors affecting inland flood damage are reflected in addition to the amount of flood damage, the flood risk matrix concept proposed in this study can be used as basic information for preparation and prevention of inland flooding, as well as it is judged that it can be considered as a major evaluation item in the selection of the priority management area for sewage maintenance for countermeasures against inland flooding.

A pilot study on estimating the biomass of chub mackerel and jack mackerel in the northwestern sea of Jeju Island using trawl survey and frequency characteristics (트롤 조사와 주파수특성을 이용한 제주도 서북 해역의 고등어와 전갱이 생물량 추정에 관한 예비 연구)

  • KANG, Myounghee;MIN, Eunbi;KIM, Byung-Yeob;LEE, Changheon;KANG, Taejong;OH, Taegeon;LIM, Byeonggwon;HWANG, Doojin
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.1
    • /
    • pp.49-58
    • /
    • 2022
  • In September and October 2020, combined acoustic and trawl surveys were conducted in the northwestern sea of Jeju Island. In the survey area, a region, so called Jeju region, was designated to esimate the biomass of chub mackerel and jack mackerel using a trawl survey method and frequency difference method. In the September survey, the weight ratios of jack mackerel and chub mackerel to the total catch were 24.6% and 2.8%, respectively, and in the October survey, those ratios were 24.9% and 20.7%, which were used to calculate their biomass (trawl survey). Using the frequency difference range (-8 to -3dB) corresponding to two species in 120 and 200 kHz, their biomass was estimated (frequency difference method). As a result, the biomass of two species from the trawl method was 3252.3 tons in September and 5777.0 tons in October. The estimated biomass by the frequency difference method was 4926.6 tons in September and 7521.5 tons in October. It was the first trial to estimate the biomass of two species using the trawl and frequency differencing methods in South Korea although there were some differences between two methods. In addition, horizontal distributions of acoustic backscattering strength over the entire survey area were mapped.

Estimation of Fresh Weight and Leaf Area Index of Soybean (Glycine max) Using Multi-year Spectral Data (다년도 분광 데이터를 이용한 콩의 생체중, 엽면적 지수 추정)

  • Jang, Si-Hyeong;Ryu, Chan-Seok;Kang, Ye-Seong;Park, Jun-Woo;Kim, Tae-Yang;Kang, Kyung-Suk;Park, Min-Jun;Baek, Hyun-Chan;Park, Yu-hyeon;Kang, Dong-woo;Zou, Kunyan;Kim, Min-Cheol;Kwon, Yeon-Ju;Han, Seung-ah;Jun, Tae-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.329-339
    • /
    • 2021
  • Soybeans (Glycine max), one of major upland crops, require precise management of environmental conditions, such as temperature, water, and soil, during cultivation since they are sensitive to environmental changes. Application of spectral technologies that measure the physiological state of crops remotely has great potential for improving quality and productivity of the soybean by estimating yields, physiological stresses, and diseases. In this study, we developed and validated a soybean growth prediction model using multispectral imagery. We conducted a linear regression analysis between vegetation indices and soybean growth data (fresh weight and LAI) obtained at Miryang fields. The linear regression model was validated at Goesan fields. It was found that the model based on green ratio vegetation index (GRVI) had the greatest performance in prediction of fresh weight at the calibration stage (R2=0.74, RMSE=246 g/m2, RE=34.2%). In the validation stage, RMSE and RE of the model were 392 g/m2 and 32%, respectively. The errors of the model differed by cropping system, For example, RMSE and RE of model in single crop fields were 315 g/m2 and 26%, respectively. On the other hand, the model had greater values of RMSE (381 g/m2) and RE (31%) in double crop fields. As a result of developing models for predicting a fresh weight into two years (2018+2020) with similar accumulated temperature (AT) in three years and a single year (2019) that was different from that AT, the prediction performance of a single year model was better than a two years model. Consequently, compared with those models divided by AT and a three years model, RMSE of a single crop fields were improved by about 29.1%. However, those of double crop fields decreased by about 19.6%. When environmental factors are used along with, spectral data, the reliability of soybean growth prediction can be achieved various environmental conditions.

Comparative Evaluation of Staggered Pedestrian Crossings and Pedestrian Crossings by Using Risk Analysis (위험도분석을 통한 이단횡단보도와 일반횡단보도의 비교평가)

  • Kim, Tae-Ho;Park, Jun-Tae;Lee, Yeon-Hyung;Rho, Jeong-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.1287-1295
    • /
    • 2015
  • This research is the study on the comparative evaluation of SPC (Staggered Pedestrian Crossings) vs PC (Pedestrian Crossings) using risk analysis. Accident factor was elicited by survey of driver's and pedestrian's at SPC & PC. I estimated the weight of a risk of violation and a mental burden by AHP (Analytic Hierarchy Process) and compared degree of risk at SPC AND PC. In conclusion, a new alternative plan of a pedestrian crossing system, staggered pedestrian crossing which plays an important role in traffic flow, pedestrian's crossings which plats an important role in traffic flow, pedestrian's convenience and traffic safer is sager than pedestrian crossings the degree of risk used this study doesn't imply an measure of the number of accident and the rate of accident, in estimating the degree of risk of pedestrian crossings, we should analyze more data of accident, behaviors, and road circumstance to include driver's and pedestrian's violation behavior in an estimate index.

Regional Characteristics Reflection Method in the Spatial Analysis Applying GIS - Case of Pyeongchang - (GIS를 활용한 공간분석에서 지역 특성의 반영 방법 - 평창을 사례로 -)

  • Kim, Chang-Hwan;Lee, Gi-Hwan;Jung, Young-Ho;Bae, Sun-Hak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.3
    • /
    • pp.93-106
    • /
    • 2006
  • The purpose of this study was to find the method of spatial analysis using GIS that would best reflect the characteristics of study area. The purpose was successfully achieved. In order to carry out multicriteria decision analysis of the study results, the spatial analysis process reflecting the characteristics of study area was examined through stages of evaluation criteria standardization and evaluation indicator weighting decision. In the stage of evaluation criteria standardization, the characteristics of study area could be reflected through the adjustment of critical when converting a real value to a general value. In the stage of evaluation indicator weighting determination, the characteristics of the study area were reflected using the present condition of land use. The results of evaluating the grades of development-potential regions by reflecting characteristics of study area showed high correlativity between already developed region and new developing region. Such results show that, in spatial analysis, by combining expert questionnaire survey and literature survey, this method which reflects the characteristics of an area is very reasonable.

  • PDF

Studies on Estimation of Fish Abundance Using an Echo Sounder ( 2 ) - The Relationship between Acoustic Backscattering Strength and Distribution Density of Fish in a Net Cage- (어군탐지기에 의한 어군량 추정에 관한 기초적 연구 ( 2 ) - 어군의 분포밀도와 초음파산란강도의 관계 -)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.1
    • /
    • pp.13-20
    • /
    • 1991
  • This paper describes the fish-density dependence of the mean backscattering strength with aggregations of encaged, free-swimming fish of known density in relation to the experimental verification of echo-integration technique for estimating the density of fish shoals. In this experiment, various numbers of gold crussian, Carassius burgeri burgeri, with a mean length of 18.5cm and a mean weight of 205.9g, were introduced into a net cage of approximately 0.76m super(3). During the backscattering measurements. the cage was suspended on the sound axis of the 50kHz transducer having a beam width of 33 degrees at -3dB downpoints. The volume backscattering strengths from fish aggregations were measured as a function of fish density. Data acquisition, processing and analysis were performed by means of the microcomputer-based sonar-echo processor including a FFT analyzer. The calibration of echo-sounder system was carried out at field with a steel ball bearing of 38mm in diameter having the target strength of -40.8dB. The dorsal-aspect target strengths on anesthetized specimens of gold crussian used in the cage experiment were measured and compared with the target strength predicted by the fish density-echo energy relationship for aggregations of free-swimming gold crussian in the cage. The results obtained can be summarized as follows: 1. The target strengths in the dorsal aspect on anesthetized specimens of gold crussian, with the mean length of 19.1cm and the mean weight of 210.5g, varied from -40.9dB to -44.8dB with a mean of -42.6dB. This mean target strength did not differ significantly from that predicted by the regression of echo energy on fish density of free-swimming gold crussian in the cage. It suggests that the target-strength measurements on anesthetized fish was valid and can be representative for live, free-swimming fish. 2. The relationship between mean backscattering strength(, dB) and distribution density of gold $crussian(\rho, $ fish/m super(3)) was expressed by the following equation; =-41.9+11 $Log(\rho)$ with a correlation coefficient of 0.97. This result support the existence of a linear relationship between fish density and echo energy, but suggest that this line has steeper slope than the regression by the theory of estimating the density of fish schools.

  • PDF

A Study on Flooding·Sinking Simulation for Cause Analysis of No. 501 Oryong Sinking Accident (제501 오룡호 침몰사고 원인분석을 위한 침수·침몰 시뮬레이션 연구)

  • Lee, Jae-Seok;Jung, Hyun-Sub;Oh, Jai-Ho;Lee, Sang-Gab
    • Journal of Navigation and Port Research
    • /
    • v.41 no.6
    • /
    • pp.451-466
    • /
    • 2017
  • Deep-sea fishing vessel No. 501 Oryong was fully flooded through its openings and sunk to the bottom of the sea due to the very rough sea weather on the way of evasion after a fishing operation in the Bearing Sea. As a result, many crew members died and/or were missing. In this study, a full-scale ship flooding sinking simulation was conducted, and the sinking process was analyzed for the precise and scientific investigation of the sinking accident using highly advanced Modeling & Simulation (M&S) system of Fluid-Structure Interaction (FSI) analysis technique. To objectively secure the weather and sea states during the sinking accident in the Bering Sea, time-based wind and wave simulation at the region of the sinking accident was carried out and analyzed, and the weather and sea states were realized by simulating the irregular strong wave and wind spectrums. Simulation scenarios were developed and full-scale ship and fluid (air & seawater) modeling was performed for the flooding sinking simulation, by investigating the hull form, structural arrangement & weight distribution, and exterior inflow openings and interior flooding paths through its drawings, and by estimating the main tank capacities and their loading status. It was confirmed that the flooding and sinking accident was slightly different from a general capsize and sinking accident according to the simple loss of stability.

Estimating the Carrying Capacity of a Coastal Bay for Oyster Culture -II. The Carrying Capacity of Geoie-Hansan Bay- (굴 양식수역의 환경용량 산정 -II. 거제 · 한산만의 환경용량-)

  • Park Jong Soo;Kim Hyung Chul;Choi Woo Jeung;Lee Won Chan;Kim Dong Myung;Koo Jun Ho;Park Chung Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.4
    • /
    • pp.408-416
    • /
    • 2002
  • A 3D hydrodynamic-ecological coupled model was applied to estimate carrying capacity in Geoje-Hansan Bay where is one of the most important oyster culturing grounds in Korea. We considered the carrying capacity as the difference between food supply to the oysters and food demand, considering monthly difference of the actual growth. The food supply to the system was determined from the results of the model simulation (tidal exchange and chlorophyll $\alpha$) over the culturing period from September to May of the following year. The food demand was estimated from the food concentration (chlorophyll $\alpha$) multiple the filtration rate of oysters that is considered monthly different growth rate of oysters and food concentration. The values of carrying capacity for the system varied from 6.1 ton/ha (minimum carrying capacity) in february to 14.91 ton/ha (maximum carrying capacity) in April of marketable size oysters (>4 g wet-tissue weight) depending on temporal variations in the food supply. The oyster production calculated from present facilities was 9 ton/ha in wet-tissue weight in Geoje-Hansan Bay. This value corresponded to $60\%$ of maximum carrying capacity of the system. The optimal carrying capacity without negatively affecting on oyster production was 5.5 ton/ha when calculated from annual statistic data and 6.1 ton/ha when determined by this study. These results suggest that it must be reduced $32\%$~$39\%$ of oyster facilities in the system.

Runoff assessment using radar rainfall and precipitation runoff modeling system model (레이더 강수량과 PRMS 모형을 이용한 유출량 평가)

  • Kim, Tae-Jeong;Kim, Sung-Hoon;Lee, Sung-Ho;Kim, Chang-Sung;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.7
    • /
    • pp.493-505
    • /
    • 2020
  • The rainfall-runoff model has been generally adopted to obtain a consistent runoff sequence with the use of the long-term ground-gauged based precipitation data. The Thiessen polygon is a commonly applied approach for estimating the mean areal rainfall from the ground-gauged precipitation by assigning weight based on the relative areas delineated by a polygon. However, spatial bias is likely to increase due to a sparse network of the rain gauge. This study aims to generate continuous runoff sequences with the mean areal rainfall obtained from radar rainfall estimates through a PRMS rainfall-runoff model. Here, the systematic error of radar rainfall is corrected by applying the G/R Ratio. The results showed that the estimated runoff using the corrected radar rainfall estimates are largely similar and comparable to that of the Thiessen. More importantly, one can expect that the mean areal rainfall obtained from the radar rainfall estimates are more desirable than that of the ground in terms of representing rainfall patterns in space, which in turn leads to significant improvement in the estimation of runoff.

Comparison of Deterministic and Probabilistic Approaches through Cases of Exposure Assessment of Child Products (어린이용품 노출평가 연구에서의 결정론적 및 확률론적 방법론 사용실태 분석 및 고찰)

  • Jang, Bo Youn;Jeong, Da-In;Lee, Hunjoo
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.3
    • /
    • pp.223-232
    • /
    • 2017
  • Objectives: In response to increased interest in the safety of children's products, a risk management system is being prepared through exposure assessment of hazardous chemicals. To estimate exposure levels, risk assessors are using deterministic and probabilistic approaches to statistical methodology and a commercialized Monte Carlo simulation based on tools (MCTool) to efficiently support calculation of the probability density functions. This study was conducted to analyze and discuss the usage patterns and problems associated with the results of these two approaches and MCTools used in the case of probabilistic approaches by reviewing research reports related to exposure assessment for children's products. Methods: We collected six research reports on exposure and risk assessment of children's products and summarized the deterministic results and corresponding underlying distributions for exposure dose and concentration results estimated through deterministic and probabilistic approaches. We focused on mechanisms and differences in the MCTools used for decision making with probabilistic distributions to validate the simulation adequacy in detail. Results: The estimation results of exposure dose and concentration from the deterministic approaches were 0.19-3.98 times higher than the results from the probabilistic approach. For the probabilistic approach, the use of lognormal, Student's T, and Weibull distributions had the highest frequency as underlying distributions of the input parameters. However, we could not examine the reasons for the selection of each distribution because of the absence of test-statistics. In addition, there were some cases estimating the discrete probability distribution model as the underlying distribution for continuous variables, such as weight. To find the cause of abnormal simulations, we applied two MCTools used for all reports and described the improper usage routes of MCTools. Conclusions: For transparent and realistic exposure assessment, it is necessary to 1) establish standardized guidelines for the proper use of the two statistical approaches, including notes by MCTool and 2) consider the development of a new software tool with proper configurations and features specialized for risk assessment. Such guidelines and software will make exposure assessment more user-friendly, consistent, and rapid in the future.