• 제목/요약/키워드: Weight estimating model

검색결과 115건 처리시간 0.029초

컴퓨터 시각을 이용한 돼지 무게 예측시스템의 개발 (Development of a Pig's Weight Estimating System Using Computer Vision)

  • 엄천일;정종훈
    • Journal of Biosystems Engineering
    • /
    • 제29권3호
    • /
    • pp.275-280
    • /
    • 2004
  • The main objective of this study was to develop and evaluate a model for estimating pigs weight using computer vision for improving the management in Korean swine farms in Korea. This research was carried out in two steps: 1) to find a model that relates the projection area with the weight of a pig; 2) to implement the model in a computer vision system mainly consisted of a monochrome CCD camera, a frame grabber and a computer system for estimating the weight of pigs in a non-contact, real-time manner. The model was developed under an important assumption there were no observable genetic differences among the pigs. The main results were: 1) The relationship between the projection area and the weight of pigs was W = 0.0569 ${\times}$ A - 32.585($R^2$ = 0.953), where W is the weight in kg; A is the projection area of a pig in $\textrm{cm}^2$; 2) The model could estimate the weight of pigs with an error less than 3.5%.

SCHEMATIC ESTIMATING MODEL FOR CONSTRUCTION PROJECTS -USING PRICIPLE COMPONENT ANALYSIS AND STRUCTURAL EQUATION METHOD

  • Young-Sil Jo;Hyun-Soo Lee;Moon-Seo Park
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.1223-1230
    • /
    • 2009
  • In the construction industry, Case-Based Reasoning (CBR) is considered to be the most suitable approach and determining the attribute weights is an important CBR problem. In this paper, a method is proposed for determining attribute weights that are calculated with attribute relation. The basic items of consideration were qualitative and quantitative influence factors. These quantitative factors were related to the qualitative factors to develop a Cost Drivers-structural equation model which can be used to estimate construction cost by considering attribute weight. The process of determining the attribute weight-structural equation model consists o 4 phases: selecting the predominant Cost Drivers for the SEM, applying the Cost Driers in the SEM, determining and verifying the attribute weights and deriving the Cost Estimation Equation. This study develops a cost estimating technique that complements the CBR method with a Cost Drivers-structural equation model which can be actively used during the schematic estimating phases of construction.

  • PDF

유전적 프로그래밍 방법을 이용한 부유식 해양 구조물의 중량 추정 모델 (Simplified Model for the Weight Estimation of Floating Offshore Structure Using the Genetic Programming Method)

  • 엄태섭;노명일;신현경;하솔
    • 한국CDE학회논문집
    • /
    • 제19권1호
    • /
    • pp.1-11
    • /
    • 2014
  • In the initial design stage, the technology for estimating and managing the weight of a floating offshore structure, such as a FPSO (Floating, Production, Storage, and Off-loading unit) and an offshore wind turbine, has a close relationship with the basic performance and the price of the structure. In this study, using the genetic programming (GP), being used a lot in the approximate estimating model and etc., the weight estimation model of the floating offshore structure was studied. For this purpose, various data for estimating the weight of the floating offshore structure were collected through the literature survey, and then the genetic programming method for developing the weight estimation model was studied and implemented. Finally, to examine the applicability of the developed model, it was applied to examples of the weight estimation of a FPSO topsides and an offshore wind turbine. As a result, it was shown that the developed model can be applied the weight estimation process of the floating offshore structure at the early design stage.

통계적 방법을 이용한 부유식 해양 플랜트의 중량 추정용 간이 모델 연구 (A Study on the Simplified Model for the Weight Estimation of Floating Offshore Plant using the Statistical Method)

  • 서성호;노명일;구남국;신현경
    • 대한조선학회논문집
    • /
    • 제50권6호
    • /
    • pp.373-382
    • /
    • 2013
  • The weight of floating offshore plant, such as an FPSO(Floating, Production, Storage, and Off-loading unit) and an offshore wind turbine, is important for estimating the amount of production material and for determining the production method. Furthermore, the weight is a factor which affects in the building cost and production time of the floating offshore plant. Although the importance of the weight has long been recognized, the weight has been roughly estimated by using the existing design and production data, and designer's experience. To solve this problem, a simplified model for the weight estimation of the floating offshore plant using the statistical method was proposed in this study. To do this, various data for estimating the weight of the floating offshore plant were collected through the literature survey, and then the correlation analysis and the multiple regression analysis were performed to generate the simplified model for the weight estimation. Finally, to examine the applicability of the developed model, it was applied to examples of the weight estimation of an FPSO topsides and an offshore wind turbine. As a result, it was shown that the developed model can be applied the weight estimation process of the floating offshore plant at the early design stage.

A study of a flatfish outlook model using a partial equilibrium model approach based on a DEEM system

  • Sukho, Han;Sujin, Heo;Namsu, Lee
    • 농업과학연구
    • /
    • 제48권4호
    • /
    • pp.815-829
    • /
    • 2021
  • The purpose of this study is to construct a flatfish outlook model that is consistent with the "Fisheries outlook" monthly publication of the fisheries outlook center of the Korea Maritime Institute (KMI). In particular, it was designed as a partial equilibrium model limited to flatfish items, but a model was constructed with a dynamic ecological equation model (DEEM) system, considering biological breeding and shipping times. Due to limited amounts of monthly data, the market equilibrium price was calculated using a recursive model method as the inverse demand. The main research results and implications are as follows. As a result of estimating young fish inventory levels, the coefficient of the young fish inventory in the previous period was estimated to be 0.03, which was not statistically significant. Because there is distinct seasonality, when estimating the breeding outcomes, the elasticity of breeding in the previous period was found to exceed 0.7, and it increased more as the weight of the fish increased, in addition, the shipment coefficient gradually increased as the weight increased, which means that as the fish weight increased, the shipment compared to the breeding volume increased. When estimating shipments, the elasticity of breeding in previous period was estimated to respond elastically as the weight increases. The price flexibility coefficient of the total supply was inelastically estimated to be -0.19. Finally, according to a model predictive power test, the Theil U1 was estimated to be very low for all of the predictors, indicating excellent predictive power.

Spikelet Number Estimation Model Using Nitrogen Nutrition Status and Biomass at Panicle Initiation and Heading Stage of Rice

  • Cui, Ri-Xian;Lee, Lee-Byun-Woo
    • 한국작물학회지
    • /
    • 제47권5호
    • /
    • pp.390-394
    • /
    • 2002
  • Spikelet number per unit area(SPN) is a major determinant of rice yield. Nitrogen nutrition status and biomass during reproductive stage determine the SPN. To formulate a model for estimating SPN, the 93 field experiment data collected from widely different regions with different japonica varieties in Korea and Japan were analyzed for the upper boundary lines of SPN responses to nitrogen nutrition index(NNI), shoot dry weight and shoot nitrogen content at panicle initiation and heading stage. The boundary lines of SPN showed asymptotic responses to all the above parameters(X) and were well fitted to the exponential function of $f(X)=alphacdot{1-etacdotexp(gamma;cdot;X)}$. Excluding the constant, from the boundary line equation, the values of the equation range from 0 to 1 and represent the indices of parameters expressing the degree of influence on SPN. In addition to those indices, the index of shoot dry weight increase during reproductive stage was calculated by directly dividing the shoot dry weight increase by the maximum value ($800 extrm{g/m}^{-2}$) of dry weight increase as it showed linear relationship with SPN. Four indices selected by forward stepwise regression at the stay level of 0.05 were those for NNI ($I_{NNI}_P$) at panicle initiation, NNI($I_{NNI}_h$) and shoot dry weight($I_{DW}_h$) at heading stage, and dry weight increase($I_{DW}$) between those two stages. The following model was obtained: SPN=48683ㆍ $I_{DWH}$$^{0.482}$$I_{NNIp}$$^{0.387}$$I_{NNIH}$$^{0.318}$$I_{DW}$ $^{0.35}$). This model accounted for about 89% of the variation of spikelet number. In conclusion this model could be used for estimating the spikelet number of japonica rice with some confidence in widely different regions and thus, integrated into a rice growth model as a component model for spikelet number estimation.n.n.

Estimation of carcass weight of Hanwoo (Korean native cattle) as a function of body measurements using statistical models and a neural network

  • Lee, Dae-Hyun;Lee, Seung-Hyun;Cho, Byoung-Kwan;Wakholi, Collins;Seo, Young-Wook;Cho, Soo-Hyun;Kang, Tae-Hwan;Lee, Wang-Hee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권10호
    • /
    • pp.1633-1641
    • /
    • 2020
  • Objective: The objective of this study was to develop a model for estimating the carcass weight of Hanwoo cattle as a function of body measurements using three different modeling approaches: i) multiple regression analysis, ii) partial least square regression analysis, and iii) a neural network. Methods: Data from a total of 134 Hanwoo cattle were obtained from the National Institute of Animal Science in South Korea. Among the 372 variables in the raw data, 20 variables related to carcass weight and body measurements were extracted to use in multiple regression, partial least square regression, and an artificial neural network to estimate the cold carcass weight of Hanwoo cattle by any of seven body measurements significantly related to carcass weight or by all 19 body measurement variables. For developing and training the model, 100 data points were used, whereas the 34 remaining data points were used to test the model estimation. Results: The R2 values from testing the developed models by multiple regression, partial least square regression, and an artificial neural network with seven significant variables were 0.91, 0.91, and 0.92, respectively, whereas all the methods exhibited similar R2 values of approximately 0.93 with all 19 body measurement variables. In addition, relative errors were within 4%, suggesting that the developed model was reliable in estimating Hanwoo cattle carcass weight. The neural network exhibited the highest accuracy. Conclusion: The developed model was applicable for estimating Hanwoo cattle carcass weight using body measurements. Because the procedure and required variables could differ according to the type of model, it was necessary to select the best model suitable for the system with which to calculate the model.

한우의 3차원 영상에서 결정된 몸통 체적을 이용한 체중 추정 (Estimation of Body Weight Using Body Volume Determined from Three-Dimensional Images for Korean Cattle)

  • 장동화;김철수;김용현
    • 생물환경조절학회지
    • /
    • 제30권4호
    • /
    • pp.393-400
    • /
    • 2021
  • 가축의 체중은 사료 요구량과 영양 상태를 평가하는 데 필요한 주요 지표에 해당한다. 본 연구는 한우의 3-D 영상으로부터 몸통 체적을 산출한 후 체중을 추정하고자 시도되었다. 한우의 3-D 영상 획득에 640×480 픽셀의 해상도, 44fps의 프레임속도 및 47°(H)×37°(V)의 화각을 갖는 TOF 카메라가 사용되었다. 획득된 3-D 영상에서 배경과 몸통 분리, 이상치 제거 등의 전처리 과정을 거쳐서 몸통에 대한 격자 영상을 얻었다. 또한 각각의 격자에 깊이 정보를 적용한 수치적분으로 몸통 체적을 결정하였다. Calibration dataset에서 체중과 몸통체적의 선형회귀에 대한 결정계수는 0.8725로 나타났다. 한편 몸통 체적에 월령을 설명 변수로 추가한 체중 추정의 중회귀 모형에서 결정계수는 0.9083으로 나타났다. Validation dataset에서 중회귀 모형을 이용한 체중 추정의 MAPE와 RMSE는 각각 8.2%, 24.5kg으로 나타났다. 결과적으로 체중 추정을 위한 회귀 모형의 성능이 개선되고, 체중 추정에 소요되는 노력이 절감됨을 고려한다면 3-D 영상에서 결정된 몸통 체적이 한우의 체중 추정에 유효한 변수로 사용될 것이다.

간척지 재배 근채류의 최대 엽장과 엽폭을 이용한 지하부 생체중 추정용 회귀 모델 결정 (Determination of Regression Model for Estimating Root Fresh Weight Using Maximum Leaf Length and Width of Root Vegetables Grown in Reclaimed Land)

  • 정대호;이평호;이인복
    • 한국환경농학회지
    • /
    • 제39권3호
    • /
    • pp.204-213
    • /
    • 2020
  • BACKGROUND: Since the number of crops cultivated in reclaimed land is huge, it is very difficult to quantify the total crop production. Therefore, a non-destructive method for predicting crop production is needed. Salt tolerant root vegetables such as red beets and sugar beet are suitable for cultivation in reclaimed land. If their underground biomass can be predicted, it helps to estimate crop productivity. Objectives of this study are to investigate maximum leaf length and weight of red beet, sugar beet, and turnips grown in reclaimed land, and to determine optimal model with regression analysis for linear and allometric growth models. METHODS AND RESULTS: Maximum leaf length, width, and root fresh weight of red beets, sugar beets, and turnips were measured. Ten linear models and six allometric growth models were selected for estimation of root fresh weight and non-linear regression analysis was conducted. The allometric growth model, which have a variable multiplied by square of maximum leaf length and maximum leaf width, showed highest R2 values of 0.67, 0.70, and 0.49 for red beets, sugar beets, and turnips, respectively. Validation results of the models for red beets and sugar beets showed the R2 values of 0.63 and 0.65, respectively. However, the model for turnips showed the R2 value of 0.48. The allometric growth model was suitable for estimating the root fresh weight of red beets and sugar beets, but the accuracy for turnips was relatively low. CONCLUSION: The regression models established in this study may be useful to estimate the total production of root vegetables cultivated in reclaimed land, and it will be used as a non-destructive method for prediction of crop information.

비선형 회귀 분석을 이용한 부유식 해양 구조물의 중량 추정 모델 연구 (A Study on the Weight Estimation Model of Floating Offshore Structures using the Non-linear Regression Analysis)

  • 서성호;노명일;신현경
    • 대한조선학회논문집
    • /
    • 제51권6호
    • /
    • pp.530-538
    • /
    • 2014
  • The weight estimation of floating offshore structures such as FPSO, TLP, semi-Submersibles, Floating Offshore Wind Turbines etc. in the preliminary design, is one of important measures of both construction cost and basic performance. Through both literature investigation and internet search, the weight data of floating offshore structures such as FPSO and TLP was collected. In this study, the weight estimation model was suggested for FPSO. The weight estimation model using non-linear regression analysis was established by fixing independent variables based on this data and the multiple regression analysis was introduced into the weight estimation model. Its reliability was within 4% of error rate.