• Title/Summary/Keyword: Weight balancing

Search Result 121, Processing Time 0.022 seconds

A Stability Analysis of a Biped Walking Robot about Balancing Weight (이족 보행로봇의 균형추 형태에 따른 안정성 해석)

  • Noh Kyung-Kon;Kim Jin-Geol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.89-96
    • /
    • 2005
  • This paper is concerned with a balancing motion formulation and control of the ZMP (Zero Moment Point) for a biped-walking robot that has a prismatic balancing weight or a revolute balancing weight. The dynamic stability equation of a walking robot which have a prismatic balancing weight is conditionally linear but a walking robot's stability equation with a revolute balancing weight is nonlinear. For a stable gait, stabilization equations of a biped-walking robot are modeled as non-homogeneous second order differential equations for each balancing weight type, and a trajectory of balancing weight can be directly calculated with the FDM (Finite Difference Method) solution of the linearized differential equation. In this paper, the 3dimensional graphic simulator is developed to get and calculate the desired ZMP and the actual ZMP. The operating program is developed for a real biped-walking robot IWRⅢ. Walking of 4 steps will be simulated and experimented with a real biped-walking robot. This balancing system will be applied to a biped humanoid robot, which consist legs and upper body, as a future work.

Control of balancing weight for IWR biped robot by genetic algorithm (유전 알고리즘을 이용한 IWR 이족 보행 로보트의 균형추 제어)

  • 심경흠;이보희;김진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1185-1188
    • /
    • 1996
  • In this paper we present a genetic approach for trajectory control algorithm of balancing weight for IWR biped walking robot. The biped walking robot, IWR that was made by Automatic Control Lab. of Inha University has a trunk which stabilizes its walking by generating compensation moment. Trunk is composed of a revolute and a prismatic joint which roles balancing weight. The motion of balancing weight is determined by the gait of legs and represented by two linear second order ordinary differential equations. The solution of this equation must satisfy some constraints simultaneously to have a physical meaning. Genetic algorithm search for this feasible motion of balancing weight under some constraints. Simulation results show that feasible motion of balancing weight can be obtained by genetic algorithm.

  • PDF

Development of 3-Dimensional Simulator for a Biped Robot (이족 보행로봇의 3차원 모의실험기 개발)

  • Noh, Kyung-Kon;Kim, Jin-Geol;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2438-2440
    • /
    • 2004
  • This study is concerned with development of 3-Dimensional simulator of a biped robot that has a prismatic balancing weight or a revolute balancing weight. The dynamic stability equation of a biped robot which have a prismatic balancing weight is conditional linear but a walking robot's stability equation with a revolute balancing weight is nonlinear. To get a stable gait of a biped robot, stabilization equations with ZMP (Zero Moment Point) are modeled as non-homogeneous second order differential equations for each balancing weight type. A trajectory of balancing weight can be directly calculated with the FDM (Finite Difference Method) solution of the linearized differential equation. In this paper, the 3-Dimensional graphic simulator is programmed to get and calculate the desired ZMP and the actual ZMP. Walking of 4 steps was simulated and verified. This balancing system will be applied to a biped humanoid robot, which consist Begs and upper body, at future work.

  • PDF

A Smooth Trajectory Generation for an Inverted Pendulum Type Biped Robot (도립진자형 이족보행로봇의 유연한 궤적 생성)

  • Noh Kyung-Kon;Kong Jung-Shik;Kim Jin-Geol;Kang Chan-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.112-121
    • /
    • 2005
  • This paper is concerned with smooth trajectory generation of biped robot which has inverted pendulum type balancing weight. Genetic algorithm is used to generate the trajectory of the leg and balancing weight. Balancing trajectory can be determined by solving the second order differential equation under the condition that the reference ZMP (Zero moment point) is settled. Reference ZMP effect on gait pattern absolutely but the problem is how to determine the reference ZMP. Genetic algorithm can find optimal solution under the high order nonlinear situation. Optimal trajectory is generated when use genetic algorithm which has some genes and a fitness function. In this paper, minimization of balancing joints motion is used for the fitness function and set the weight factor of the two balancing joints at the fitness function. Inverted pendulum type balancing weight is very similar with human and this model can be used fur humanoid robot. Simulation results show ZMP trajectory and the walking experiment made on the real biped robot IWR-IV.

The Experimental Study and Comparison on Usage of Vibration Monitoring Sensors for Positioning of Balancing on Rotating Machinery (진동 감시용 위치 결정 센서의 위상오차에 대한 실험적 고찰과 비교평가)

  • Oh, Seung-Tae;Yoo, Mu-Sang;Bong, Suk-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.314-320
    • /
    • 2014
  • Field balancing is required in any kind of phase information for the determination location balancing mass toward a rotor unbalance mass. Phase or phase angle is a measurement of the relationship of how one vibration signal which relates to another vibration signal and is commonly used to calculate the placement of balance weight. In this paper, A right guideline shows the photo optical speed sensor as the external keyphasor is a very useful when diagnosing machinery vibration problems on considering a phase lag comparing to the laser optical speed sensor. Some experimental results generate the interesting phase errors when appling to a wrong conditions. So, Usage of photo optical speed sensor which is used primarily to measure the shaft rotating speed serves as a reference for measuring vibration phase information has effect on the placement of phase angle how it was misunderstood. This paper will help a right method to search for the position of balancing weight and serves as baseline for further measurements using low cost and much easier user convenience. It is concluded that the propose baseline is likely to be applicable to apply to the practical field balancing weight.

  • PDF

The Experimental Study and Comparison on Usage of Vibration Monitoring Sensors for Positioning of Balancing on Rotating Machinery (진동 감시용 위치 결정 센서의 위상오차에 대한 실험적 고찰과 비교 평가)

  • Oh, Seung-Tae;Yoo, Mu-Sang;Bong, Suk-Keun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.2
    • /
    • pp.101-107
    • /
    • 2015
  • Field balancing is required in any kind of phase information for the determination location balancing mass toward a rotor unbalance mass. Phase or phase angle is a measurement of the relationship of how one vibration signal which relates to another vibration signal and is commonly used to calculate the placement of balance weight. In this paper, A right guideline shows the photo optical speed sensor as the external KeyPhasor is a very useful when diagnosing machinery vibration problems on considering a phase lag comparing to the laser optical speed sensor. Some experimental results generate the interesting phase errors when appling to a wrong conditions. So, Usage of photo optical speed sensor which is used primarily to measure the shaft rotating speed serves as a reference for measuring vibration phase information has effect on the placement of phase angle how it was misunderstood. This paper will help a right method to search for the position of balancing weight and serves as baseline for further measurements using low cost and much easier user convenience. It is concluded that the propose baseline is likely to be applicable to apply to the practical field balancing weight.

Walking test of a quadruped robot with weight balancing oscillator (무게평형진자를 가진 4족 로봇의 보행 실험)

  • 유재명;오상관;김영탁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.446-449
    • /
    • 2002
  • Quadruped walking robot requires dynamic control to keep its stability in high speed walking. To keep its walking stability by control of only legs' Joint angle lowers energy efficiency. It is known that an animal or a human use the moving of the mass center of one's upper body to keep the stability. We have developed a quadruped walking robot with weight balancing oscillator that have high energy efficiency. In this study, walking tests are performed for the robot to verify the validity of the weight balancing oscillator.

  • PDF

A Gait Implementation of a Biped Robot Based on Intelligent Algorithm (지능 알고리즘 기반의 이족 보행로봇의 보행 구현)

  • Kang Chan-Soo;Kim Jin-Geol;Noh Kyung-Kon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1210-1216
    • /
    • 2004
  • This paper deals with a human-like gait generation of a biped robot with a balancing weight of an inverted pendulum type by using genetic algorithm. The ZMP (Zero Moment Point) is the most important index in a biped robot's dynamic walking stability. To perform a stable walking of a biped robot, a balancing motion is required according to legs' trajectories and a desired ZMP trajectory. A dynamic equation of the balancing motion is nonlinear due to an inverted pendulum type's balancing weight. To solve the nonlinear equation by the FDM (Finite Difference Method), a linearized model of equation is proposed. And GA (Genetic Algorithm) is applied to optimize a human-like balancing motion of a biped robot. By genetic algorithm, the index of the balancing motion is efficiently optimized, and a dynamic walking stability is verified by the ZMP verification equation. These balancing motion are simulated and experimented with a real biped robot IWR-IV. This human-like gait generation will be applied to a humanoid robot, at future work.

A Study on the Balancing of V/W-type Reciprocating Air Compressor (V/W형 왕복동 공기압측기의 평형에 관한 연구)

  • 김형진;김성춘;김정만;김의간
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.1
    • /
    • pp.24-31
    • /
    • 2004
  • Recently, as the marine compressor power is increased, vibration problems on the marine vessel with V/W type reciprocating compressor have been occurred. A research on the balancing of marine V/W type reciprocating compressor has hardly been reported though a number of researches on the balancing of rotating machinery have been conducted. As a V/W type compressor has high capacity with long stroke, compact size and high center of gravity, It is easy to have a vibration problem by a little bit unbalanced force and moment. In this study, calculation methods for balance weight of the V/W type reciprocating compressors, which have different piston weight and asymmetry structure, are formulated. And their reliability were verified by comparing calculated balance weight with the experimental results of the real marine V/W type reciprocating compressors.