• Title/Summary/Keyword: Weight Optimization

Search Result 1,319, Processing Time 0.029 seconds

A Study on Dynamic Characteristics of a Weight-Reduced Bogie Frame (경량화된 대차프레임의 동적특성에 관한 연구)

  • 최경호;박정호;안찬우;김현수;조우석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.823-826
    • /
    • 2001
  • A shape optimization of a rib of a bolster of a bogie frame is attempted and a dimension optimization on upper and lower plates is also carried out for the reduction of the weight of bogie frame. In addition, the dynamic characteristics of the weight reduced model are investigated by an analysis of a natural frequency and a transient analysis. The results show that the first natural frequency of an optimized model is larger than that of the lowest design value. And the results of transit analysis based on the experimental stress also show smaller value than the yield stress. Thus the optimized model attempted in this study is considered to be structurally stable and useful for the improvement of railway carriages.

  • PDF

Multi-Objective Design Optimization of Composite Stiffened Panel Using Response Surface Methodology

  • Murugesan, Mohanraj;Kang, Beom-Soo;Lee, Kyunghoon
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.297-310
    • /
    • 2015
  • This study aims to develop efficient composite laminates for buckling load enhancement, interlaminar shear stress minimization, and weight reduction. This goal is achieved through cover-skin lay-ups around skins and stiffeners, which amplify bending stiffness and defer delamination by means of effective stress distribution. The design problem is formulated as multi-objective optimization that maximizes buckling load capability while minimizing both maximum out-of-plane shear stress and panel weight. For efficient optimization, response surface methodology is employed for buckling load, two out-of-plane shear stresses, and panel weight with respect to one ply thickness, six fiber orientations of a skin, and four stiffener heights. Numerical results show that skin-covered composite stiffened panels can be devised for maximum buckling load and minimum interlaminar shear stresses under compressive load. In addition, the effects of different material properties are investigated and compared. The obtained results reveal that the composite stiffened panel with Kevlar material is the most effective design.

The Stacking Sequence Optimization of Stiffened Laminated Curved Panels with Different Loading and Stiffener Spacing

  • Kim Cheol;Yoon In-Se
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1541-1547
    • /
    • 2006
  • An efficient procedure to obtain the optimal stacking sequence and the minimum weight of stiffened laminated composite curved panels under several loading conditions and stiffener layouts has been developed based on the finite element method and the genetic algorithm that is powerful for the problem with integer variables. Often, designing composite laminates ends up with a stacking sequence optimization that may be formulated as an integer programming problem. This procedure is applied for a problem to find the stacking sequence having a maximum critical buckling load factor and the minimum weight. The object function in this case is the weight of a stiffened laminated composite shell. Three different types of stiffener layouts with different loading conditions are investigated to see how these parameters influence on the stacking sequence optimization of the panel and the stiffeners. It is noticed from the results that the optimal stacking sequence and lay-up angles vary depending on the types. of loading and stiffener spacing.

Multi-objective Optimization of Lower Control Arm Considering the Stability for Weight Reduction (경량화에 대한 안전성을 고려한 로우컨트롤암의 다목적 최적설계)

  • 이동화;박영철;허선철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.94-101
    • /
    • 2003
  • Recently, miniaturization and weight reduction is getting more attention due to various benefits in automotive components design. It is a trend that the design of experiment(DOE) and statical design method are frequently used for optimization. In this research, the safety of lower control arm is evaluated according to its material change form S45C to A16061 for the reduction of arm's weight. The variance analysis on the basis of structure analysis and DOE is applied to the lower control m. We have proposed a statistical design model to evaluate the effect of structural modification by performing the practical multi-objective optimization considering mass, stress and deflection.

Optimum design of steel space frames with composite beams using genetic algorithm

  • Artar, Musa;Daloglu, Ayse T.
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.503-519
    • /
    • 2015
  • This paper presents an optimization process using Genetic Algorithm (GA) for minimum weight by selecting suitable standard sections from a specified list taken from American Institute of Steel Construction (AISC). The stress constraints obeying AISC-LRFD (American Institute of Steel Construction-Load and Resistance Factor Design), lateral displacement constraints being the top and inter-storey drift, mid-span deflection constraints for the beams and geometric constraints are considered for optimum design by using GA that mimics biological processes. Optimum designs for three different space frames taken from the literature are carried out first without considering concrete slab effects in finite element analyses for the constraints above and the results are compared with the ones available in literature. The same optimization procedures are then repeated for the case of space frames with composite (steel and concrete) beams. A program is coded in MATLAB for the optimization processes. Results obtained in the study showed that consideration of the contribution of the concrete on the behavior of the floor beams results with less steel weight and ends up with more economical designs.

System RBDO of truss structures considering interval distribution parameters

  • Zaeimi, Mohammad;Ghoddosian, Ali
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.81-96
    • /
    • 2019
  • In this paper, a hybrid uncertain model is applied to system reliability based design optimization (RBDO) of trusses. All random variables are described by random distributions but some key distribution parameters of them which lack information are defined by variation intervals. For system RBDO of trusses, the first order reliability method, as well as monotonicity analysis and the branch and bound method, are utilized to determine the system failure probability; and Improved (${\mu}+{\lambda}$) constrained differential evolution (ICDE) is employed for the optimization process. System reliability assessment of several numerical examples and system RBDO of different truss structures are proposed to verify our results. Moreover, the effect of different classes of interval distribution parameters on the optimum weight of the structure and the reliability index are also investigated. The results indicate that the weight of the structure is increased by increasing the uncertainty level. Moreover, it is shown that for a certain random variable, the optimum weight is more increased by the translation interval parameters than the rotation ones.

Discrete sizing and layout optimization of steel truss-framed structures with Simulated Annealing Algorithm

  • Bresolin, Jessica M.;Pravia, Zacarias M.C.;Kripka, Moacir
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.603-617
    • /
    • 2022
  • Structural design, in general, is developed through trial and error technique which is guided by standards criteria and based on the intuition and experience of the engineer, a context that leads to structural over-dimensioning, with uneconomic solutions. Aiming to find the optimal design, structural optimization methods have been developed to find a balance between cost, structural safety, and material performance. These methods have become a great opportunity in the steel structural engineering domain since they have as their main purpose is weight minimization, a factor directly correlated to the real cost of the structure. Assuming an objective function of minimum weight with stress and displacement constraints provided by Brazilian standards, the present research proposes the sizing optimization and combined approach of sizing and shape optimization, through a software developed to implement the Simulated Annealing metaheuristic algorithm. Therefore, two steel plane frame layouts, each admitting four typical truss geometries, were proposed in order to expose the difference between the optimal solutions. The assessment of the optimal solutions indicates a notable weight reduction, especially in sizing and shape optimization combination, in which the quantity of design variables is increased along with the search space, improving the efficiency of the optimal solutions achieved.

Optimization of Vacuum Cleaner Handle Using Approximate Model and NSGA-II (근사 모델과 NSGA-II를 이용한 진공청소기 손잡이 근사최적설계)

  • Yun, Minro;Lee, Jongsoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.30-35
    • /
    • 2017
  • The major parts of a vacuum cleaner are molded. The vacuum cleaner works in multi-load conditions. Therefore, the designer needs to optimize the structure and injection molding conditions simultaneously. Here, the main factor of design is the rib shape and thickness. The greater the rib thickness, the greater the stiffness of the structure. However, it causes an increase in weight. On the other hand, the lower the rib thickness, the greater the increase in the injection pressure. However, the weight will be reduced. Therefore, the designer needs to optimize the rib shape and thickness for structure stiffness and injection molding. In order to solve this problem, we propose an optimization method using D.O.E and a response surface model, which is a multi-objective optimization method using the multi-objective genetic algorithm.

Multiobjective size and topolgy optimization of dome structures

  • Tugrul, Talaslioglu
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.795-821
    • /
    • 2012
  • The size and topology of geometrically nonlinear dome structures are optimized thereby minimizing both its entire weight & joint (node) displacements and maximizing load-carrying capacity. Design constraints are implemented from provisions of American Petroleum Institute specification (API RP2A-LRFD). In accordance with the proposed design constraints, the member responses computed by use of arc-length technique as a nonlinear structural analysis method are checked at each load increment. Thus, a penalization process utilized for inclusion of unfeasible designations to genetic search is correspondingly neglected. In order to solve this complex design optimization problem with multiple objective functions, Non-dominated Sorting Genetic Algorithm II (NSGA II) approach is employed as a multi-objective optimization tool. Furthermore, the flexibility of proposed optimization is enhanced thereby integrating an automatic dome generating tool. Thus, it is possible to generate three distinct sphere-shaped dome configurations with varying topologies. It is demonstrated that the inclusion of brace (diagonal) members into the geometrical configuration of dome structure provides a weight-saving dome designation with higher load-carrying capacity. The proposed optimization approach is recommended for the design optimization of geometrically nonlinear dome structures.

Surrogate Based Optimization Techniques for Aerodynamic Design of Turbomachinery

  • Samad, Abdus;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.179-188
    • /
    • 2009
  • Recent development of high speed computers and use of optimization techniques have given a big momentum of turbomachinery design replacing expensive experimental cost as well as trial and error approaches. The surrogate based optimization techniques being used for aerodynamic turbomachinery designs coupled with Reynolds-averaged Navier-Stokes equations analysis involve single- and multi-objective optimization methods. The objectives commonly tried to improve were adiabatic efficiency, pressure ratio, weight etc. Presently coupling the fluid flow and structural analysis is being tried to find better design in terms of weight, flutter and vibration, and turbine life. The present article reviews the surrogate based optimization techniques used recently in turbomachinery shape optimizations.