• Title/Summary/Keyword: Weight Learning

Search Result 658, Processing Time 0.028 seconds

Predictive of Osteoporosis by Tree-based Machine Learning Model in Post-menopause Woman (폐경 여성에서 트리기반 머신러닝 모델로부터 골다공증 예측)

  • Lee, In-Ja;Lee, Junho
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.495-502
    • /
    • 2020
  • In this study, the prevalence of osteoporosis was predicted based on 10 independent variables such as age, weight, and alcohol consumption and 4 tree-based machine-learning models, and the performance of each model was compared. Also the model with the highest performance was used to check the performance by clearing the independent variable, and Area Under Curve(ACU) was utilized to evaluate the performance of the model. The ACU for each model was Decision tree 0.663, Random forest 0.704, GBM 0.702, and XGBoost 0.710 and the importance of the variable was shown in the order of age, weight, and family history. As a result of using XGBoost, the highest performance model and clearing independent variables, the ACU shows the best performance of 0.750 with 7 independent variables. This data suggests that this method be applied to predict osteoporosis, but also other various diseases. In addition, it is expected to be used as basic data for big data research in the health care field.

Structural live load surveys by deep learning

  • Li, Yang;Chen, Jun
    • Smart Structures and Systems
    • /
    • v.30 no.2
    • /
    • pp.145-157
    • /
    • 2022
  • The design of safe and economical structures depends on the reliable live load from load survey. Live load surveys are traditionally conducted by randomly selecting rooms and weighing each item on-site, a method that has problems of low efficiency, high cost, and long cycle time. This paper proposes a deep learning-based method combined with Internet big data to perform live load surveys. The proposed survey method utilizes multi-source heterogeneous data, such as images, voice, and product identification, to obtain the live load without weighing each item through object detection, web crawler, and speech recognition. The indoor objects and face detection models are first developed based on fine-tuning the YOLOv3 algorithm to detect target objects and obtain the number of people in a room, respectively. Each detection model is evaluated using the independent testing set. Then web crawler frameworks with keyword and image retrieval are established to extract the weight information of detected objects from Internet big data. The live load in a room is derived by combining the weight and number of items and people. To verify the feasibility of the proposed survey method, a live load survey is carried out for a meeting room. The results show that, compared with the traditional method of sampling and weighing, the proposed method could perform efficient and convenient live load surveys and represents a new load research paradigm.

Improve the Performance of Semi-Supervised Side-channel Analysis Using HWFilter Method

  • Hong Zhang;Lang Li;Di Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.738-754
    • /
    • 2024
  • Side-channel analysis (SCA) is a cryptanalytic technique that exploits physical leakages, such as power consumption or electromagnetic emanations, from cryptographic devices to extract secret keys used in cryptographic algorithms. Recent studies have shown that training SCA models with semi-supervised learning can effectively overcome the problem of few labeled power traces. However, the process of training SCA models using semi-supervised learning generates many pseudo-labels. The performance of the SCA model can be reduced by some of these pseudo-labels. To solve this issue, we propose the HWFilter method to improve semi-supervised SCA. This method uses a Hamming Weight Pseudo-label Filter (HWPF) to filter the pseudo-labels generated by the semi-supervised SCA model, which enhances the model's performance. Furthermore, we introduce a normal distribution method for constructing the HWPF. In the normal distribution method, the Hamming weights (HWs) of power traces can be obtained from the normal distribution of power points. These HWs are filtered and combined into a HWPF. The HWFilter was tested using the ASCADv1 database and the AES_HD dataset. The experimental results demonstrate that the HWFilter method can significantly enhance the performance of semi-supervised SCA models. In the ASCADv1 database, the model with HWFilter requires only 33 power traces to recover the key. In the AES_HD dataset, the model with HWFilter outperforms the current best semi-supervised SCA model by 12%.

Gradient Descent Approach for Value-Based Weighting (점진적 하강 방법을 이용한 속성값 기반의 가중치 계산방법)

  • Lee, Chang-Hwan;Bae, Joo-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.381-388
    • /
    • 2010
  • Naive Bayesian learning has been widely used in many data mining applications, and it performs surprisingly well on many applications. However, due to the assumption that all attributes are equally important in naive Bayesian learning, the posterior probabilities estimated by naive Bayesian are sometimes poor. In this paper, we propose more fine-grained weighting methods, called value weighting, in the context of naive Bayesian learning. While the current weighting methods assign a weight to each attribute, we assign a weight to each attribute value. We investigate how the proposed value weighting effects the performance of naive Bayesian learning. We develop new methods, using gradient descent method, for both value weighting and feature weighting in the context of naive Bayesian. The performance of the proposed methods has been compared with the attribute weighting method and general Naive bayesian, and the value weighting method showed better in most cases.

Lost and Found Registration and Inquiry Management System for User-dependent Interface using Automatic Image Classification and Ranking System based on Deep Learning (딥 러닝 기반 이미지 자동 분류 및 랭킹 시스템을 이용한 사용자 편의 중심의 유실물 등록 및 조회 관리 시스템)

  • Jeong, Hamin;Yoo, Hyunsoo;You, Taewoo;Kim, Yunuk;Ahn, Yonghak
    • Convergence Security Journal
    • /
    • v.18 no.4
    • /
    • pp.19-25
    • /
    • 2018
  • In this paper, we propose an user-centered integrated lost-goods management system through a ranking system based on weight and a hierarchical image classification system based on Deep Learning. The proposed system consists of a hierarchical image classification system that automatically classifies images through deep learning, and a ranking system modules that listing the registered lost property information on the system in order of weight for the convenience of the query process.In the process of registration, various information such as category classification, brand, and related tags are automatically recognized by only one photograph, thereby minimizing the hassle of users in the registration process. And through the ranking systems, it has increased the efficiency of searching for lost items by exposing users frequently visited lost items on top. As a result of the experiment, the proposed system allows users to use the system easily and conveniently.

  • PDF

Improvement of Track Tracking Performance Using Deep Learning-based LSTM Model (딥러닝 기반 LSTM 모형을 이용한 항적 추적성능 향상에 관한 연구)

  • Hwang, Jin-Ha;Lee, Jong-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.189-192
    • /
    • 2021
  • This study applies a deep learning-based long short-term memory(LSTM) model to track tracking technology. In the case of existing track tracking technology, the weight of constant velocity, constant acceleration, stiff turn, and circular(3D) flight is automatically changed when tracking track in real time using LMIPDA based on Kalman filter according to flight characteristics of an aircraft such as constant velocity, constant acceleration, stiff turn, and circular(3D) flight. In this process, it is necessary to improve performance of changing flight characteristic weight, because changing flight characteristics such as stiff turn flight during constant velocity flight could incur the loss of track and decreasing of the tracking performance. This study is for improving track tracking performance by predicting the change of flight characteristics in advance and changing flight characteristic weigh rapidly. To get this result, this study makes deep learning-based Long Short-Term Memory(LSTM) model study the plot and target of simulator applied with radar error model, and compares the flight tracking results of using Kalman filter with those of deep learning-based Long Short-Term memory(LSTM) model.

  • PDF

Dynamic Positioning of Robot Soccer Simulation Game Agents using Reinforcement learning

  • Kwon, Ki-Duk;Cho, Soo-Sin;Kim, In-Cheol
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.59-64
    • /
    • 2001
  • The robot soccer simulation game is a dynamic multi-agent environment. In this paper we suggest a new reinforcement learning approach to each agent's dynamic positioning in such dynamic environment. Reinforcement learning is the machine learning in which an agent learns from indirect, delayed reward an optimal policy to chose sequences of actions that produce the greatest cumulative reward. Therefore the reinforcement learning is different from supervised learning in the sense that there is no presentation of input pairs as training examples. Furthermore, model-free reinforcement learning algorithms like Q-learning do not require defining or learning any models of the surrounding environment. Nevertheless it can learn the optimal policy if the agent can visit every state- action pair infinitely. However, the biggest problem of monolithic reinforcement learning is that its straightforward applications do not successfully scale up to more complex environments due to the intractable large space of states. In order to address this problem. we suggest Adaptive Mediation-based Modular Q-Learning (AMMQL)as an improvement of the existing Modular Q-Learning (MQL). While simple modular Q-learning combines the results from each learning module in a fixed way, AMMQL combines them in a more flexible way by assigning different weight to each module according to its contribution to rewards. Therefore in addition to resolving the problem of large state effectively, AMMQL can show higher adaptability to environmental changes than pure MQL. This paper introduces the concept of AMMQL and presents details of its application into dynamic positioning of robot soccer agents.

  • PDF

On design of neural controller with the fuzzy weight for an underwater vehicle (수중운동체를 위한 퍼지 가중치를 갖는 뉴럴 제어기 설계)

  • 김성현;최중락;심귀보;전홍태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.3
    • /
    • pp.151-158
    • /
    • 1996
  • As an approach to design the intelligent controller for an underwater vehicle, this paper will propose a neural controller with the fuzzy weight which can tune the ocntorl rule effectively. The initial weights of th efuzzy-neural controller are constructdd by priori-information based on fuzzy control theory and tuned automatically by learning. The proposed control scheme has two improtnat characteristics of adaptation and learning under the control environment. Also it has the advantage that the precise dynamic characteristics of an underwater vehicle may not be required. The effectiveness of the proposed scheme will be demonstrated by computer simulations of an underwater vehicle.

  • PDF

Real-Time Evaluation System for Acquisition of A Computer Certificate of Qualification (컴퓨터 자격증 취득을 위한 실시간 평가 시스템)

  • Shin Seong-Yoon;Pyo Seong-Bae;Rhee Yang-Won
    • KSCI Review
    • /
    • v.14 no.1
    • /
    • pp.221-228
    • /
    • 2006
  • In this paper we propose an active learning method that makes a database for the information about certificates and practical examinations and accesses it easily. First of all, this method makes it possible to evaluate students individually, improves the motive of learning and gives students a sense of achievement by providing a user-specific question filtering technique using user pronto information by weight. And, it elevates the acquisition rate of certificates by advising and managing for certificate-acquisition and it also draw more interest and understanding for future directions.

  • PDF

An Attention Method-based Deep Learning Encoder for the Sentiment Classification of Documents (문서의 감정 분류를 위한 주목 방법 기반의 딥러닝 인코더)

  • Kwon, Sunjae;Kim, Juae;Kang, Sangwoo;Seo, Jungyun
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.4
    • /
    • pp.268-273
    • /
    • 2017
  • Recently, deep learning encoder-based approach has been actively applied in the field of sentiment classification. However, Long Short-Term Memory network deep learning encoder, the commonly used architecture, lacks the quality of vector representation when the length of the documents is prolonged. In this study, for effective classification of the sentiment documents, we suggest the use of attention method-based deep learning encoder that generates document vector representation by weighted sum of the outputs of Long Short-Term Memory network based on importance. In addition, we propose methods to modify the attention method-based deep learning encoder to suit the sentiment classification field, which consist of a part that is to applied to window attention method and an attention weight adjustment part. In the window attention method part, the weights are obtained in the window units to effectively recognize feeling features that consist of more than one word. In the attention weight adjustment part, the learned weights are smoothened. Experimental results revealed that the performance of the proposed method outperformed Long Short-Term Memory network encoder, showing 89.67% in accuracy criteria.