• Title/Summary/Keyword: Weierstrass semigroup at a point

Search Result 6, Processing Time 0.019 seconds

A WEIERSTRASS SEMIGROUP AT A PAIR OF INFLECTION POINTS WITH HIGH MULTIPLICITIES

  • Kim, Seon Jeong;Kang, Eunju
    • The Pure and Applied Mathematics
    • /
    • v.29 no.4
    • /
    • pp.353-368
    • /
    • 2022
  • In the previous paper [4], we classified the Weierstrass semigroups at a pair of inflection points of multiplicities d and d - 1 on a smooth plane curve of degree d. In this paper, as a continuation of those results, we classify all semigroups each of which arises as a Weierstrass semigroup at a pair of inflection points of multiplicities d, d - 1 and d - 2 on a smooth plane curve of degree d.

WEIERSTRASS SEMIGROUPS AT PAIRS OF NON-WEIERSTRASS POINTS ON A SMOOTH PLANE CURVE OF DEGREE 5

  • Cheon, Eun Ju;Kim, Seon Jeong
    • The Pure and Applied Mathematics
    • /
    • v.27 no.4
    • /
    • pp.251-267
    • /
    • 2020
  • We classify all semigroups each of which arises as a Weierstrass semigroup at a pair of non-Weierstrass points on a smooth plane curve of degree 5. First we find the candidates of semigroups by computing the dimensions of linear series on the curve. Then, by constructing examples of smooth plane curves of degree 5, we prove that each of the candidates is actually a Weierstrass semigroup at some pair of points on the curve. We need to study the systems of quadratic curves, which cut out the canonical series on the plane curve of degree 5.

NUMBER OF WEAK GALOIS-WEIERSTRASS POINTS WITH WEIERSTRASS SEMIGROUPS GENERATED BY TWO ELEMENTS

  • Komeda, Jiryo;Takahashi, Takeshi
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1463-1474
    • /
    • 2019
  • Let C be a nonsingular projective curve of genus ${\geq}2$ over an algebraically closed field of characteristic 0. For a point P in C, the Weierstrass semigroup H(P) is defined as the set of non-negative integers n for which there exists a rational function f on C such that the order of the pole of f at P is equal to n, and f is regular away from P. A point P in C is referred to as a weak Galois-Weierstrass point if P is a Weierstrass point and there exists a Galois morphism ${\varphi}:C{\rightarrow}{\mathbb{p}}^1$ such that P is a total ramification point of ${\varphi}$. In this paper, we investigate the number of weak Galois-Weierstrass points of which the Weierstrass semigroups are generated by two positive integers.

Weierstrass semigroups at inflection points

  • Kim, Seon-Jeong
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.753-759
    • /
    • 1995
  • Let C be a smooth complex algebraic curve of genus g. For a divisor D on C, dim D means the dimension of the complete linear series $\mid$D$\mid$ containing D, which is the same as the projective dimension of the vector space of meromorphic functions f on C with divisor of poles $(f)_\infty \leq D$.

  • PDF