• Title/Summary/Keyword: Weibull regression

Search Result 54, Processing Time 0.02 seconds

Application of discrete Weibull regression model with multiple imputation

  • Yoo, Hanna
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.3
    • /
    • pp.325-336
    • /
    • 2019
  • In this article we extend the discrete Weibull regression model in the presence of missing data. Discrete Weibull regression models can be adapted to various type of dispersion data however, it is not widely used. Recently Yoo (Journal of the Korean Data and Information Science Society, 30, 11-22, 2019) adapted the discrete Weibull regression model using single imputation. We extend their studies by using multiple imputation also with several various settings and compare the results. The purpose of this study is to address the merit of using multiple imputation in the presence of missing data in discrete count data. We analyzed the seventh Korean National Health and Nutrition Examination Survey (KNHANES VII), from 2016 to assess the factors influencing the variable, 1 month hospital stay, and we compared the results using discrete Weibull regression model with those of Poisson, negative Binomial and zero-inflated Poisson regression models, which are widely used in count data analyses. The results showed that the discrete Weibull regression model using multiple imputation provided the best fit. We also performed simulation studies to show the accuracy of the discrete Weibull regression using multiple imputation given both under- and over-dispersed distribution, as well as varying missing rates and sample size. Sensitivity analysis showed the influence of mis-specification and the robustness of the discrete Weibull model. Using imputation with discrete Weibull regression to analyze discrete data will increase explanatory power and is widely applicable to various types of dispersion data with a unified model.

Modeling clustered count data with discrete weibull regression model

  • Yoo, Hanna
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.4
    • /
    • pp.413-420
    • /
    • 2022
  • In this study we adapt discrete weibull regression model for clustered count data. Discrete weibull regression model has an attractive feature that it can handle both under and over dispersion data. We analyzed the eighth Korean National Health and Nutrition Examination Survey (KNHANES VIII) from 2019 to assess the factors influencing the 1 month outpatient stay in 17 different regions. We compared the results using clustered discrete Weibull regression model with those of Poisson, negative binomial, generalized Poisson and Conway-maxwell Poisson regression models, which are widely used in count data analyses. The results show that the clustered discrete Weibull regression model using random intercept model gives the best fit. Simulation study is also held to investigate the performance of the clustered discrete weibull model under various dispersion setting and zero inflated probabilities. In this paper it is shown that using a random effect with discrete Weibull regression can flexibly model count data with various dispersion without the risk of making wrong assumptions about the data dispersion.

Imputation Procedures in Weibull Regression Analysis in the presence of missing values

  • Kim Soon-kwi;Jeong Bong-Bin
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2001.11a
    • /
    • pp.143-148
    • /
    • 2001
  • A dataset having missing observations is often completed by using imputed values. In this paper the performances and accuracy of complete case methods and four imputation procedures are evaluated when missing values exist only on the response variables in the Weibull regression model. Our simulation results show that compared to other imputation procedures, in particular, hotdeck and Weibull regression imputation procedure can be well used to compensate for missing data. In addition an illustrative real data is given.

  • PDF

Diagnostics for Weibull Regression Model with Censored Data

  • Keumseong;Soon-kwi
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.1
    • /
    • pp.23-36
    • /
    • 2000
  • This paper discusses the local influence approach to the Weibull regression model with censored data. Diagnostics for the Weibull regression model are proposed and developed when simultaneous perturbations of the response vector are allowed.

  • PDF

Bivariate odd-log-logistic-Weibull regression model for oral health-related quality of life

  • Cruz, Jose N. da;Ortega, Edwin M.M.;Cordeiro, Gauss M.;Suzuki, Adriano K.;Mialhe, Fabio L.
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.3
    • /
    • pp.271-290
    • /
    • 2017
  • We study a bivariate response regression model with arbitrary marginal distributions and joint distributions using Frank and Clayton's families of copulas. The proposed model is used for fitting dependent bivariate data with explanatory variables using the log-odd log-logistic Weibull distribution. We consider likelihood inferential procedures based on constrained parameters. For different parameter settings and sample sizes, various simulation studies are performed and compared to the performance of the bivariate odd-log-logistic-Weibull regression model. Sensitivity analysis methods (such as local and total influence) are investigated under three perturbation schemes. The methodology is illustrated in a study to assess changes on schoolchildren's oral health-related quality of life (OHRQoL) in a follow-up exam after three years and to evaluate the impact of caries incidence on the OHRQoL of adolescents.

The Bivariate Kumaraswamy Weibull regression model: a complete classical and Bayesian analysis

  • Fachini-Gomes, Juliana B.;Ortega, Edwin M.M.;Cordeiro, Gauss M.;Suzuki, Adriano K.
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.5
    • /
    • pp.523-544
    • /
    • 2018
  • Bivariate distributions play a fundamental role in survival and reliability studies. We consider a regression model for bivariate survival times under right-censored based on the bivariate Kumaraswamy Weibull (Cordeiro et al., Journal of the Franklin Institute, 347, 1399-1429, 2010) distribution to model the dependence of bivariate survival data. We describe some structural properties of the marginal distributions. The method of maximum likelihood and a Bayesian procedure are adopted to estimate the model parameters. We use diagnostic measures based on the local influence and Bayesian case influence diagnostics to detect influential observations in the new model. We also show that the estimates in the bivariate Kumaraswamy Weibull regression model are robust to deal with the presence of outliers in the data. In addition, we use some measures of goodness-of-fit to evaluate the bivariate Kumaraswamy Weibull regression model. The methodology is illustrated by means of a real lifetime data set for kidney patients.

Analysis of flexural fatigue failure of concrete made with 100% coarse recycled and natural aggregates

  • Murali, G.;Indhumathi, T.;Karthikeyan, K.;Ramkumar, V.R.
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.291-298
    • /
    • 2018
  • In this study, the flexural fatigue performance of concrete beams made with 100% Coarse Recycled Concrete Aggregates (RCA) and 100% Coarse Natural Aggregates (NA) were statistically commanded. For this purpose, the experimental fatigue test results of earlier researcher were investigated using two parameter Weibull distribution. The shape and scale parameters of Weibull distribution function was evaluated using seven numerical methods namely, Graphical method (GM), Least-Squares (LS) regression of Y on X, Least-Squares (LS) regression of X on Y, Empherical Method of Lysen (EML), Mean Standard Deviation Method (MSDM), Energy Pattern Factor Method (EPFM) and Method of Moments (MOM). The average of Weibull parameters was used to incorporate survival probability into stress (S)-fatigue life (N) relationships. Based on the Weibull theory, as single and double logarithm fatigue equations for RCA and NA under different survival probability were provided. The results revealed that, by considering 0.9 level survival probability, the theoretical stress level corresponding to a fatigue failure number equal to one million cycle, decreases by 8.77% (calculated using single-logarithm fatigue equation) and 6.62% (calculated using double logarithm fatigue equation) in RCA when compared to NA concrete.

Application of Weibull Distribution Function to Analysis of Breakthrough Curves from Push Pull Tracer Test

  • Hyun-Tae, Hwang;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.217-220
    • /
    • 2003
  • In the case of the remediation studies, push pull test is a more time and cost effective mettled than multi-well tracer test. It also gives Just as much or more information than the traditionally used methods. But the data analysis for the hydraulic parameters, there have been some defections such as underestimation of dispersivity, requirement for effective porosity, and calculation of recovery of center of mass to estimate linear velocity. In this research, Weibull distribution function is proposed to estimate the center of mass of breakthrough curve for Push pull test. The hydraulic parameter estimation using Weibull function showed more exact values of center of mass than those of exponential regression for field test data.

  • PDF

Sample size calculations for clustered count data based on zero-inflated discrete Weibull regression models

  • Hanna Yoo
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.1
    • /
    • pp.55-64
    • /
    • 2024
  • In this study, we consider the sample size determination problem for clustered count data with many zeros. In general, zero-inflated Poisson and binomial models are commonly used for zero-inflated data; however, in real data the assumptions that should be satisfied when using each model might be violated. We calculate the required sample size based on a discrete Weibull regression model that can handle both underdispersed and overdispersed data types. We use the Monte Carlo simulation to compute the required sample size. With our proposed method, a unified model with a low failure risk can be used to cope with the dispersed data type and handle data with many zeros, which appear in groups or clusters sharing a common variation source. A simulation study shows that our proposed method provides accurate results, revealing that the sample size is affected by the distribution skewness, covariance structure of covariates, and amount of zeros. We apply our method to the pancreas disorder length of the stay data collected from Western Australia.

Statistical Inferences in the Weibull Regression Model based on Censored Data (중도절단(中途切斷)된 데이터를 이용한 와이블회귀모형(回歸模型)의 통계적(統計的) 추론(推論)에 관한 연구(硏究))

  • Cho, Kil-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.4
    • /
    • pp.13-30
    • /
    • 1993
  • We propose the ordered least squares estimators(OLSE's) of the parameters and the p-th quantiles for the two-parameter Weibull regression model under the Type II censoring, The Monte Carlo simulations are performed to compare the proposed estimators with the maximum likelihood estimators(MLE's), and it is shown that the proposed estimators are slightly better than MLE's as the censoring rate goes up.

  • PDF