• Title/Summary/Keyword: Weibull probability plot

Search Result 14, Processing Time 0.017 seconds

Empirical modelling approaches to modelling failures

  • Baik, Jaiwook;Jo, Jinnam
    • International Journal of Reliability and Applications
    • /
    • v.14 no.2
    • /
    • pp.107-114
    • /
    • 2013
  • Modelling of failures is an important element of reliability modelling. Empirical modelling approach suitable for complex item is explored in this paper. First step of the empirical modelling approach is to plot hazard function, density function, Weibull probability plot as well as cumulative intensity function to see which model fits best for the given data. Next step of the empirical modelling approach is select appropriate model for the data and fit the parametric model accordingly and estimate the parameters.

  • PDF

Prediction of Fatigue Design Life in Magnesium Alloy by Failure Probability (파손확률에 따른 마그네슘합금의 피로설계수명 예측)

  • Choi, Seon-Soon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.804-811
    • /
    • 2010
  • The fatigue crack propagation is stochastic in nature, because the variables affecting the fatigue behavior are random and have uncertainty. Therefore, the fatigue life prediction is critical for the design and the maintenance of many structural components. In this study, fatigue experiments are conducted on the specimens of magnesium alloy AZ31 under various conditions such as thickness of specimen, the load ratio and the loading condition. The probability distribution fit to the fatigue failure life are investigated through a probability plot paper by these conditions. The probabilities of failure at various conditions are also estimated. The fatigue design life is predicted by using the Weibull distribution.

Estimation of sewer deterioration by Weibull distribution function (와이블 분포함수를 이용한 하수관로 노후도 추정)

  • Kang, Byongjun;Yoo, Soonyu;Park, Kyoohong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.4
    • /
    • pp.251-258
    • /
    • 2020
  • Sewer deterioration models are needed to forecast the remaining life expectancy of sewer networks by assessing their conditions. In this study, the serious defect (or condition state 3) occurrence probability, at which sewer rehabilitation program should be implemented, was evaluated using four probability distribution functions such as normal, lognormal, exponential, and Weibull distribution. A sample of 252 km of CCTV-inspected sewer pipe data in city Z was collected in the first place. Then the effective data (284 sewer sections of 8.15 km) with reliable information were extracted and classified into 3 groups considering the sub-catchment area, sewer material, and sewer pipe size. Anderson-Darling test was conducted to select the most fitted probability distribution of sewer defect occurrence as Weibull distribution. The shape parameters (β) and scale parameters (η) of Weibull distribution were estimated from the data set of 3 classified groups, including standard errors, 95% confidence intervals, and log-likelihood values. The plot of probability density function and cumulative distribution function were obtained using the estimated parameter values, which could be used to indicate the quantitative level of risk on occurrence of CS3. It was estimated that sewer data group 1, group 2, and group 3 has CS3 occurrence probability exceeding 50% at 13th-year, 11th-year, and 16th-year after the installation, respectively. For every data groups, the time exceeding the CS3 occurrence probability of 90% was also predicted to be 27th- to 30th-year after the installation.

Prediction of Extreme Sloshing Pressure Using Different Statistical Models

  • Cetin, Ekin Ceyda;Lee, Jeoungkyu;Kim, Sangyeob;Kim, Yonghwan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.185-194
    • /
    • 2018
  • In this study, the extreme sloshing pressure was predicted using various statistical models: three-parameter Weibull distribution, generalized Pareto distribution, generalized extreme value distribution, and three-parameter log-logistic distribution. The estimation of sloshing impact pressure is important in design of liquid cargo tank in severe sea state. In order to get the extreme values of local impact pressures, a lot of model tests have been carried out and statistical analysis has been performed. Three-parameter Weibull distribution and generalized Pareto distribution are widely used as the statistical analysis method in sloshing phenomenon, but generalized extreme value distribution and three-parameter log-logistic distribution are added in this study. Additionally, statistical distributions are fitted to peak pressure data using three different parameter estimation methods. The data were obtained from a three-dimensional sloshing model text conducted at Seoul National University. The loading conditions were 20%, 50%, and 95% of tank height, and the analysis was performed based on the measured impact pressure on four significant panels with large sloshing impacts. These fittings were compared by observing probability of exceedance diagrams and probability plot correlation coefficient test for goodness-of-fit.

Evaluation of Flexural Strength of Silicon Die with Thickness by 4 Point Bending Test (4점굽힘시험에 의한 실리콘 다이의 두께에 따른 파단강도 평가)

  • Min, Yoon-Ki;Byeon, Jai-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • In this study, flexural strength and fracture behavior of silicon die from single crystalline silicon wafer were investigated as a function of thickness. Silicon wafers with various thickness of 300, 200, 180, 160, 150, and 100 ${\mu}m$ were prepared by mechanical grinding and polishing of as-saw wafers. Flexural strength of 40 silicon dies (size: 62.5 mm${\times}$4 mm) from each wafer was measured by four point bending test, respectively. For statistical analysis of flexural strength, shape factor(i.e., Weibull modulus) and scale factor were determined from Weibull plot. Flexural strength reflecting both statistical fracture probability and size (thickness) effect of brittle silicon die was obtained as a linear function of die thickness. Fracture appearance was discussed in relation with measured fracture strength.

Statistical Estimation of Wind Speed in the Gwangyang-Myodo Region (광양 - 묘도 지역의 통계학적인 풍속 추정)

  • Bae, Yong Gwi;Han, Gwan Mun;Lee, Seong Lo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.197-205
    • /
    • 2008
  • In order to estimate mean wind speed in the Gwangyang-Myodo Region, the probability distribution model of extreme values has been used in the statistical analysis of joint distribution probability of daily maximum wind speed and corresponding direction in this paper. For this purpose frequency of daily maximum records at respective stations is inquired into and sample of largest yearly wind speed of sixteen compass direction and non-direction is extracted from daily data of maximum wind speed and appropriate direction of the meteorological observing stations nearby the bridge construction site. These extreme speed records are applied to Gumbel and Weibull distribution model and parameters are estimated through method of moment and method of least squares etc. And also, distribution and parameters are inquired into whether it is fitted through the probability plot correlation coefficient examination. From fitted parameters the largest yearly wind speed of sixteen compass direction and non-direction is extrapolated taking into account factors regarding sample size of data and distance from the bridge construction site according to the appropriate stations.

Non-Gaussian analysis methods for planing craft motion

  • Somayajula, Abhilash;Falzarano, Jeffrey M.
    • Ocean Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.293-308
    • /
    • 2014
  • Unlike the traditional displacement type vessels, the high speed planing crafts are supported by the lift forces which are highly non-linear. This non-linear phenomenon causes their motions in an irregular seaway to be non-Gaussian. In general, it may not be possible to express the probability distribution of such processes by an analytical formula. Also the process might not be stationary or ergodic in which case the statistical behavior of the motion to be constantly changing with time. Therefore the extreme values of such a process can no longer be calculated using the analytical formulae applicable to Gaussian processes. Since closed form analytical solutions do not exist, recourse is taken to fitting a distribution to the data and estimating the statistical properties of the process from this fitted probability distribution. The peaks over threshold analysis and fitting of the Generalized Pareto Distribution are explored in this paper as an alternative to Weibull, Generalized Gamma and Rayleigh distributions in predicting the short term extreme value of a random process.

Extraction of Time-varying Failure Rate for Power Distribution System Equipment (배전계통 설비의 시변 고장률 추출)

  • Moon, Jong-Fil;Lee, Hee-Tae;Kim, Jae-Chul;Park, Chang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.11
    • /
    • pp.548-556
    • /
    • 2005
  • Reliability evaluation of power distribution system is very important to both power utilities and customers. It present the probabilistic number and duration of interruption such as failure rate, SATDI, SAIFI, and CAIDI. However, it has a fatal weakness at reliability index because of accuracy of failure rate. In this paper, the Time-varying Failure Rate(TFR) of power distribution system equipment is extracted from the recorded failure data of KEPCO(Korea Electric Power Corporation) in Korea. For TFR extraction, it is used that the fault data accumulated by KEPCO during 10 years. The TFR is approximated to bathtub curve using the exponential(random failure) and Weibull(aging failure) distribution function. In addition, Kaplan-Meier estimation is applied to TFR extraction because of incomplete failure data of KEPCO. Finally, Probability plot and regression analysis is applied. It is presented that the extracted TFR is more effective and useful than Mean Failure Rate(MfR) through the comparison between TFR and MFR

Thermal shock behavior of alumina ceramics by ball-on-3 ball test (Ball-on-3 ball test에 의한 알루미나 세라믹스의 열충격 거동)

  • 이중현;박성은;한봉석;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1062-1068
    • /
    • 1999
  • The flexural strength distribution of alumina ceramics was observed using ball-on-3 ball test after thermal shock into the distilled water of 25$^{\circ}C$ Crack distribution was also observed by dye-penetration after thermal shock test. Fracture probability of alumina ceramics by ball-on-3 ball test was studied and compared with that by 3-point bending test. The crack distance from the center of thespecimen showed the stronger effect on the flexural strength by ball-on-3 ball test than the crack density.

  • PDF