• Title/Summary/Keyword: Weibull Shape Factor

Search Result 44, Processing Time 0.023 seconds

Evaluation of Dorim-Goh bridge using ambient trucks through short-period structural health monitoring system

  • Kaloop, Mosbeh R.;Hwang, Won Sup;Elbeltagi, Emad;Beshr, Ashraf;Hu, Jong Wan
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.347-359
    • /
    • 2019
  • This paper aims to evaluate the behavior of Dorim-Goh bridge in Seoul, Korea, under static and dynamic loads effects by ambient trucks. The prestressed concrete (PSC) girders and reinforcement concrete (RC) slab of the bridge are evaluated and assessed. A short period monitoring system is designed which comprises displacement, strain and accelerometer sensors to measure the bridge performance under static and dynamic trucks loads. The statistical analysis is used to assess the static behavior of the bridge and the wavelet analysis and probabilistic using Weibull distribution are used to evaluate the frequency and reliability of the dynamic behavior of the bridge. The results show that the bridge is safe under static and dynamic loading cases. In the static evaluation, the measured neutral axis position of the girders is deviated within 5% from its theoretical position. The dynamic amplification factor of the bridge girder and slab are lower than the design value of that factor. The Weibull shape parameters are decreased, it which means that the bridge performance decreases under dynamic loads effect. The bridge girder and slab's frequencies are higher than the design values and constant under different truck speeds.

Accelerated Life Test Using Structural Analysis of a Helicopter Accumulator (헬기용 축압기의 구조해석에 의한 가속 수명시험)

  • Lee, Geon-Hui;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.67-72
    • /
    • 2020
  • Life tests are essential in reducing the catastrophic damage caused by the accidents of large machinery such as aircraft and ships. However, life tests are challenging to implement due to the high costs and time required to test the life of large machinery parts. Therefore, it is advantageous and convenient to apply accelerated life test techniques for key components to reduce costs and time. In fact, extensive research has already been conducted on these techniques. However, recently, there have been cases in which an experimental value was applied to the shape parameter of the Weibull distribution used in the reliability test, but the test time was not significantly reduced. Therefore, in this paper, the shape parameters are estimated from the probability density function of the Weibull distribution for the analysis of an accelerated life test for bladder accumulators, which are core components of military helicopters. The test time was derived based on the number of samples and confidence level by substituting it into the test time equation. Next, the accelerated life test time was calculated using the steady-state test time with an acceleration factor obtained from the Arrhenius model. The steady-state life test required approximately 15,000 H, whereas the accelerated life test time for one sample at 100 ℃ was 34% shorter than that of the steady-state life test.

Evaluation of Flexural Strength of Silicon Die with Thickness by 4 Point Bending Test (4점굽힘시험에 의한 실리콘 다이의 두께에 따른 파단강도 평가)

  • Min, Yoon-Ki;Byeon, Jai-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • In this study, flexural strength and fracture behavior of silicon die from single crystalline silicon wafer were investigated as a function of thickness. Silicon wafers with various thickness of 300, 200, 180, 160, 150, and 100 ${\mu}m$ were prepared by mechanical grinding and polishing of as-saw wafers. Flexural strength of 40 silicon dies (size: 62.5 mm${\times}$4 mm) from each wafer was measured by four point bending test, respectively. For statistical analysis of flexural strength, shape factor(i.e., Weibull modulus) and scale factor were determined from Weibull plot. Flexural strength reflecting both statistical fracture probability and size (thickness) effect of brittle silicon die was obtained as a linear function of die thickness. Fracture appearance was discussed in relation with measured fracture strength.

A Study on the Prediction of Fatigue Life by use of Probability Density Function (확률밀도함수를 이용한 피로균열 발생수명 예측에 관한 연구)

  • 김종호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.453-461
    • /
    • 1999
  • The estimation of fatigue life at the design stage is very important in order to arrive at feasible and cost effective solutions considering the total lifetime of the structure and machinery compo-nents. In this study the practical procedure of prediction of fatigue life by use of cumulative damage factors based on Miner-Palmgren hypothesis and probability density function is shown with a $135,000m^3$ LNG tank being used as an example. In particular the parameters of Weibull distribution taht determine the stress spectrum are dis-cussed. At the end some of uncertainties associated with fatigue life prediction are discussed. The main results obtained from this study are as follows: 1. The practical procedure of prediction of fatigue life by use of cumulative damage factors expressed in combination of probability density function and S-N data is proposed. 2. The calculated fatigue life is influenced by the shape parameter and stress block. The conser-vative fatigue design can be achieved when using higher value of shape parameter and the stress blocks divded into more stress blocks.

  • PDF

The Variations of Design Parameters for Small Scale Hydro Power Plant with Rainfall Condition (강우상태에 의한 소수력발전소 설계변수의 변화)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.138-141
    • /
    • 2008
  • The effects of design parameters for small scale hydro power(SSHP) plants due to rainfall condition have been studied. The model to predict hydrologic performance for SSHP plants is used in this study. The results from analysis for rainfall conditions based on Weibull distribution show that the capacity and load factor of SSHP site had large difference between the variation of shape and scale parameter. Especially, the hydrologic performance of SSHP site due to variation of shape parameter varied more sensitive than the case of variation of scale parameter. And also, the methodology represented in this study can be used to decide the primary design specifications of SSHP sites.

  • PDF

The Variations of Performance Parameters for Small Scale Hydro Power Plant with Rainfall Condition (강우상태에 의한 소수력발전소 성능변수의 변화)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • New & Renewable Energy
    • /
    • v.4 no.3
    • /
    • pp.15-22
    • /
    • 2008
  • The effects of design parameters for small scale hydro power (SSHP) plants due to rainfall condition have been studied. The model to predict hydrologic performance for SSHP plants is used in this study. The results from analysis for rainfall conditions based on Weibull distribution show that the capacity and load factor of SSHP site had large difference between the variation of shape and scale parameter. Especially, the hydrologic performance of SSHP site due to variation of shape parameter varied more sensitive than the case of variation of scale parameter. And also, the methodology represented in this study can be used to decide the primary design specifications of SSHP sites.

  • PDF

The Effects of Design Parameters for Small Scale Hydro Power Plant with Rainfall Condation (강우상태에 의한 소수력발전소 설계인자의 영향)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.1
    • /
    • pp.43-49
    • /
    • 2008
  • The effects of design parameters for small scale hydro power(SSHP) plants due to rainfall condition have been studied. The model to predict hydrologic performance for SSHP plants is used in this study. The results from analysis for rainfall conditions based on Weibull distribution show that the capacity and load factor of SSHP site had large difference between the variation of shape and scale parameter. Especially, the hydrologic performance of SSHP site due to variation of shape parameter varied more sensitive than the case of variation of scale parameter. And also, the methodology represented in this study can be used to decide the primary design specifications of SSHP sites.

Reliability Prediction of a Fuel Boost Pump using Statistical Methods (통계적 방법을 이용한 연료승압펌프의 신뢰도 예측)

  • Baek, Nak-Gon;Lee, Hyung-Ju;Lim, Jin-shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.143-148
    • /
    • 2010
  • A Statistical methods are used to determine the reliability of a Fuel Boost Pump for aviation. Failures are referenced from failure reports. The failure-free periods between successive failure events are evaluated in the form of weibull distribution. The results of analysis were calculated shape factor, scale parameter and mean time to failure. It found that the reason of failure is wear-out period.

  • PDF

Accelerated Life Test of Industrial Cleaner Motor (산업용 청소기 모터의 가속수명시험)

  • Eom, Hak-Yong;Lee, Gi-Chun;Chang, Mu-Seong;Park, Jong-Won;Lee, Yong-Bum
    • Journal of Applied Reliability
    • /
    • v.18 no.3
    • /
    • pp.193-200
    • /
    • 2018
  • Purpose: In this study, the life of the motor is investigated by performing the accelerated life test with the brush wear of the industrial cleaner motor as the main failure mode. Methods: The accelerating stress factor of the accelerated life test is a voltage, which can increase the number of revolutions of the motor to accelerate the brush wear due to the friction between the brush and the commutator. Also, the accelerating stress level was determined after determining the maximum allowable level of the voltage through the preliminary test. Results: The motor failure time at each accelerating stress level was predicted by regression analysis with brush wear length as performance degradation data. The main failure mode, which is brush wear, of the motor was reproduced by this test. The shape parameter of the Weibull distribution was confirmed to be the same statistically at all accelerating stress levels by the likelihood ratio test. Conclusion: The life of the motor was investigated by performing the accelerated life test with the brush wear of the industrial cleaner motor as the main failure mode. Through the accelerating test method of the cleaner motor, various life expectancy and life expectancy of the acceleration factor are predicted.

Characteristics of Parameters for the Distribution of fatigue Crack Growth Lives wider Constant Stress Intensity factor Control (일정 응력확대계수 제어하의 피로균열전파수명 분포의 파라메터 특성)

  • 김선진
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.54-59
    • /
    • 2003
  • The characteristics of the parameters for the probability distribution of fatigue crack growth life, using the non-Gaussian random process simulation method is investigated. In this paper, the material resistance to fatigue crack growth is treated as a spatial random process, which varies randomly on the crack surface. Using the previous experimental data, the crack length equals the number of cycle curves that are simulated. The results are obtained for constant stress intensity factor range conditions with stress ratios of R=0.2, three specimen thickness of 6, 12 and 18mm, and the four stress intensity level. The probability distribution function of fatigue crack growth life seems to follow the 3-parameter Wiubull,, showing a slight dependence on specimen thickness and stress intensity level. The shape parameter, $\alpha$, does not show the dependency of thickness and stress intensity level, but the scale parameter, $\beta$, and location parameter, ${\gamma}$, are decreased by increasing the specimen thickness and stress intensity level. The slope for the stress intensity level is larger than the specimen thickness.