• Title/Summary/Keyword: Website Analysis

Search Result 597, Processing Time 0.027 seconds

A Study on the Current Status and Utilization of Old Map in Library and Museums in Korea (국내 도서관·박물관 소장 고지도의 현황 및 활용에 관한 연구)

  • Gi Young Kim
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.35 no.1
    • /
    • pp.97-125
    • /
    • 2024
  • The purpose of this study is to increase access to information on old maps and to discuss efficient ways to utilize old maps, such as providing services and information using old maps. To this end, the information search system of domestic institutions that provide old map information was investigated, and methods of searching for old map data and accessing information were searched on the website. In addition, the current status of the collection of old maps in domestic libraries and museums was analyzed by referring to the homepage, book, research book, and publication of each institution. As a result of the analysis, about 2,200 old maps were housed in 76 institutions, including national, public, and university libraries and museums nationwide. Each institution in the collection of old maps was carrying out publication business, such as publication of English manuscripts, exhibitions and books, publication of research document edits such as lists and summaries. However, reading and using of original documents are limited due to the rare nature of old maps and the data characteristics of the only one. In order to effectively utilize old maps, first, it is necessary to improve access to old map information services and expand academic information services. Second, it is proposed to use old maps as data for archival construction that reflects the identity of the region. Third, it is necessary to cultivate professional manpower who selects and provides information based on knowledge of old map data and humanities literacy.

An Analysis of the Comparative Importance of Systematic Attributes for Developing an Intelligent Online News Recommendation System: Focusing on the PWYW Payment Model (지능형 온라인 뉴스 추천시스템 개발을 위한 체계적 속성간 상대적 중요성 분석: PWYW 지불모델을 중심으로)

  • Lee, Hyoung-Joo;Chung, Nuree;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.75-100
    • /
    • 2018
  • Mobile devices have become an important channel for news content usage in our daily life. However, online news content readers' resistance to online news monetization is more serious than other digital content businesses, such as webtoons, music sources, videos, and games. Since major portal sites distribute online news content free of charge to increase their traffics, customers have been accustomed to free news content; hence this makes online news providers more difficult to switch their policies on business models (i.e., monetization policy). As a result, most online news providers are highly dependent on the advertising business model, which can lead to increasing number of false, exaggerated, or sensational advertisements inside the news website to maximize their advertising revenue. To reduce this advertising dependencies, many online news providers had attempted to switch their 'free' readers to 'paid' users, but most of them failed. However, recently, some online news media have been successfully applying the Pay-What-You-Want (PWYW) payment model, which allows readers to voluntarily pay fees for their favorite news content. These successful cases shed some lights to the managers of online news content provider regarding that the PWYW model can serve as an alternative business model. In this study, therefore, we collected 379 online news articles from Ohmynews.com that has been successfully employing the PWYW model, and analyzed the comparative importance of systematic attributes of online news content on readers' voluntary payment. More specifically, we derived the six systematic attributes (i.e., Type of Article Title, Image Stimulation, Article Readability, Article Type, Dominant Emotion, and Article-Image Similarity) and three or four levels within each attribute based on previous studies. Then, we conducted content analysis to measure five attributes except Article Readability attribute, measured by Flesch readability score. Before conducting main content analysis, the face reliabilities of chosen attributes were measured by three doctoral level researchers with 37 sample articles, and inter-coder reliabilities of the three coders were verified. Then, the main content analysis was conducted for two months from March 2017 with 379 online news articles. All 379 articles were reviewed by the same three coders, and 65 articles that showed inconsistency among coders were excluded before employing conjoint analysis. Finally, we examined the comparative importance of those six systematic attributes (Study 1), and levels within each of the six attributes (Study 2) through conjoint analysis with 314 online news articles. From the results of conjoint analysis, we found that Article Readability, Article-Image Similarity, and Type of Article Title are the most significant factors affecting online news readers' voluntary payment. First, it can be interpreted that if the level of readability of an online news article is in line with the readers' level of readership, the readers will voluntarily pay more. Second, the similarity between the content of the article and the image within it enables the readers to increase the information acceptance and to transmit the message of the article more effectively. Third, readers expect that the article title would reveal the content of the article, and the expectation influences the understanding and satisfaction of the article. Therefore, it is necessary to write an article with an appropriate readability level, and use images and title well matched with the content to make readers voluntarily pay more. We also examined the comparative importance of levels within each attribute in more details. Based on findings of two studies, two major and nine minor propositions are suggested for future empirical research. This study has academic implications in that it is one of the first studies applying both content analysis and conjoint analysis together to examine readers' voluntary payment behavior, rather than their intention to pay. In addition, online news content creators, providers, and managers could find some practical insights from this research in terms of how they should produce news content to make readers voluntarily pay more for their online news content.

Enhancing Predictive Accuracy of Collaborative Filtering Algorithms using the Network Analysis of Trust Relationship among Users (사용자 간 신뢰관계 네트워크 분석을 활용한 협업 필터링 알고리즘의 예측 정확도 개선)

  • Choi, Seulbi;Kwahk, Kee-Young;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.113-127
    • /
    • 2016
  • Among the techniques for recommendation, collaborative filtering (CF) is commonly recognized to be the most effective for implementing recommender systems. Until now, CF has been popularly studied and adopted in both academic and real-world applications. The basic idea of CF is to create recommendation results by finding correlations between users of a recommendation system. CF system compares users based on how similar they are, and recommend products to users by using other like-minded people's results of evaluation for each product. Thus, it is very important to compute evaluation similarities among users in CF because the recommendation quality depends on it. Typical CF uses user's explicit numeric ratings of items (i.e. quantitative information) when computing the similarities among users in CF. In other words, user's numeric ratings have been a sole source of user preference information in traditional CF. However, user ratings are unable to fully reflect user's actual preferences from time to time. According to several studies, users may more actively accommodate recommendation of reliable others when purchasing goods. Thus, trust relationship can be regarded as the informative source for identifying user's preference with accuracy. Under this background, we propose a new hybrid recommender system that fuses CF and social network analysis (SNA). The proposed system adopts the recommendation algorithm that additionally reflect the result analyzed by SNA. In detail, our proposed system is based on conventional memory-based CF, but it is designed to use both user's numeric ratings and trust relationship information between users when calculating user similarities. For this, our system creates and uses not only user-item rating matrix, but also user-to-user trust network. As the methods for calculating user similarity between users, we proposed two alternatives - one is algorithm calculating the degree of similarity between users by utilizing in-degree and out-degree centrality, which are the indices representing the central location in the social network. We named these approaches as 'Trust CF - All' and 'Trust CF - Conditional'. The other alternative is the algorithm reflecting a neighbor's score higher when a target user trusts the neighbor directly or indirectly. The direct or indirect trust relationship can be identified by searching trust network of users. In this study, we call this approach 'Trust CF - Search'. To validate the applicability of the proposed system, we used experimental data provided by LibRec that crawled from the entire FilmTrust website. It consists of ratings of movies and trust relationship network indicating who to trust between users. The experimental system was implemented using Microsoft Visual Basic for Applications (VBA) and UCINET 6. To examine the effectiveness of the proposed system, we compared the performance of our proposed method with one of conventional CF system. The performances of recommender system were evaluated by using average MAE (mean absolute error). The analysis results confirmed that in case of applying without conditions the in-degree centrality index of trusted network of users(i.e. Trust CF - All), the accuracy (MAE = 0.565134) was lower than conventional CF (MAE = 0.564966). And, in case of applying the in-degree centrality index only to the users with the out-degree centrality above a certain threshold value(i.e. Trust CF - Conditional), the proposed system improved the accuracy a little (MAE = 0.564909) compared to traditional CF. However, the algorithm searching based on the trusted network of users (i.e. Trust CF - Search) was found to show the best performance (MAE = 0.564846). And the result from paired samples t-test presented that Trust CF - Search outperformed conventional CF with 10% statistical significance level. Our study sheds a light on the application of user's trust relationship network information for facilitating electronic commerce by recommending proper items to users.

Exploring the Trend of Korean Creative Dance by Analyzing Research Topics : Application of Text Mining (연구주제 분석을 통한 한국창작무용 경향 탐색 : 텍스트 마이닝의 적용)

  • Yoo, Ji-Young;Kim, Woo-Kyung
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.6
    • /
    • pp.53-60
    • /
    • 2020
  • The study is based on the assumption that the trend of phenomena and trends in research are contextually consistent. Therefore the purpose of this study is to explore the trend of dance through the subject analysis of the Korean creative dance study by utilizing text mining. Thus, 1,291 words were analyzed in the 616 journal title, which were established on the paper search website. The collection, refining and analysis of the data were all R 3.6.0 SW. According to the study, keywords representing the times were frequently used before the 2000s, but Korean creative dance research types were also found in terms of education and physical training. Second, the frequency of keywords related to the dance troupe's performance was high after the 2000s, but it was confirmed that Choi Seung-hee was still in an important position in the study of Korean creative dance. Third, an analysis of the overall research subjects of the Korean creative dance study showed that the research on 'Art of Choi Seung-hee in the modern era' was the highest proportion. Fourth, the Hot Topics, which are rising as of 2000, appeared as 'the performance activities of the National Dance Company' and 'the choreography expression and utilization of traditional dance'. However, since the recent trend of the National Dance Company's performance is advocating 'modernization based on tradition', it has been confirmed that the trend of Korean creative dance since the 2000s has been focused on the use of traditional dance motifs. Fifth, the Cold Topic, which has been falling as of 2000, has been shown to be a study of 'dancing expressions by age'. It was judged that interest in research also decreased due to the tendency to mix various dance styles after the establishment of the genre of Korean creative dance.

An Analysis of the Internal Marketing Impact on the Market Capitalization Fluctuation Rate based on the Online Company Reviews from Jobplanet (직원을 위한 내부마케팅이 기업의 시가 총액 변동률에 미치는 영향 분석: 잡플래닛 기업 리뷰를 중심으로)

  • Kichul Choi;Sang-Yong Tom Lee
    • Information Systems Review
    • /
    • v.20 no.2
    • /
    • pp.39-62
    • /
    • 2018
  • Thanks to the growth of computing power and the recent development of data analytics, researchers have started to work on the data produced by users through the Internet or social media. This study is in line with these recent research trends and attempts to adopt data analytical techniques. We focus on the impact of "internal marketing" factors on firm performance, which is typically studied through survey methodologies. We looked into the job review platform Jobplanet (www.jobplanet.co.kr), which is a website where employees and former employees anonymously review companies and their management. With web crawling processes, we collected over 40K data points and performed morphological analysis to classify employees' reviews for internal marketing data. We then implemented econometric analysis to see the relationship between internal marketing and market capitalization. Contrary to the findings of extant survey studies, internal marketing is positively related to a firm's market capitalization only within a limited area. In most of the areas, the relationships are negative. Particularly, female-friendly environment and human resource development (HRD) are the areas exhibiting positive relations with market capitalization in the manufacturing industry. In the service industry, most of the areas, such as employ welfare and work-life balance, are negatively related with market capitalization. When firm size is small (or the history is short), female-friendly environment positively affect firm performance. On the contrary, when firm size is big (or the history is long), most of the internal marketing factors are either negative or insignificant. We explain the theoretical contributions and managerial implications with these results.

Product Community Analysis Using Opinion Mining and Network Analysis: Movie Performance Prediction Case (오피니언 마이닝과 네트워크 분석을 활용한 상품 커뮤니티 분석: 영화 흥행성과 예측 사례)

  • Jin, Yu;Kim, Jungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.49-65
    • /
    • 2014
  • Word of Mouth (WOM) is a behavior used by consumers to transfer or communicate their product or service experience to other consumers. Due to the popularity of social media such as Facebook, Twitter, blogs, and online communities, electronic WOM (e-WOM) has become important to the success of products or services. As a result, most enterprises pay close attention to e-WOM for their products or services. This is especially important for movies, as these are experiential products. This paper aims to identify the network factors of an online movie community that impact box office revenue using social network analysis. In addition to traditional WOM factors (volume and valence of WOM), network centrality measures of the online community are included as influential factors in box office revenue. Based on previous research results, we develop five hypotheses on the relationships between potential influential factors (WOM volume, WOM valence, degree centrality, betweenness centrality, closeness centrality) and box office revenue. The first hypothesis is that the accumulated volume of WOM in online product communities is positively related to the total revenue of movies. The second hypothesis is that the accumulated valence of WOM in online product communities is positively related to the total revenue of movies. The third hypothesis is that the average of degree centralities of reviewers in online product communities is positively related to the total revenue of movies. The fourth hypothesis is that the average of betweenness centralities of reviewers in online product communities is positively related to the total revenue of movies. The fifth hypothesis is that the average of betweenness centralities of reviewers in online product communities is positively related to the total revenue of movies. To verify our research model, we collect movie review data from the Internet Movie Database (IMDb), which is a representative online movie community, and movie revenue data from the Box-Office-Mojo website. The movies in this analysis include weekly top-10 movies from September 1, 2012, to September 1, 2013, with in total. We collect movie metadata such as screening periods and user ratings; and community data in IMDb including reviewer identification, review content, review times, responder identification, reply content, reply times, and reply relationships. For the same period, the revenue data from Box-Office-Mojo is collected on a weekly basis. Movie community networks are constructed based on reply relationships between reviewers. Using a social network analysis tool, NodeXL, we calculate the averages of three centralities including degree, betweenness, and closeness centrality for each movie. Correlation analysis of focal variables and the dependent variable (final revenue) shows that three centrality measures are highly correlated, prompting us to perform multiple regressions separately with each centrality measure. Consistent with previous research results, our regression analysis results show that the volume and valence of WOM are positively related to the final box office revenue of movies. Moreover, the averages of betweenness centralities from initial community networks impact the final movie revenues. However, both of the averages of degree centralities and closeness centralities do not influence final movie performance. Based on the regression results, three hypotheses, 1, 2, and 4, are accepted, and two hypotheses, 3 and 5, are rejected. This study tries to link the network structure of e-WOM on online product communities with the product's performance. Based on the analysis of a real online movie community, the results show that online community network structures can work as a predictor of movie performance. The results show that the betweenness centralities of the reviewer community are critical for the prediction of movie performance. However, degree centralities and closeness centralities do not influence movie performance. As future research topics, similar analyses are required for other product categories such as electronic goods and online content to generalize the study results.

A Study on Analyzing Sentiments on Movie Reviews by Multi-Level Sentiment Classifier (영화 리뷰 감성분석을 위한 텍스트 마이닝 기반 감성 분류기 구축)

  • Kim, Yuyoung;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.71-89
    • /
    • 2016
  • Sentiment analysis is used for identifying emotions or sentiments embedded in the user generated data such as customer reviews from blogs, social network services, and so on. Various research fields such as computer science and business management can take advantage of this feature to analyze customer-generated opinions. In previous studies, the star rating of a review is regarded as the same as sentiment embedded in the text. However, it does not always correspond to the sentiment polarity. Due to this supposition, previous studies have some limitations in their accuracy. To solve this issue, the present study uses a supervised sentiment classification model to measure a more accurate sentiment polarity. This study aims to propose an advanced sentiment classifier and to discover the correlation between movie reviews and box-office success. The advanced sentiment classifier is based on two supervised machine learning techniques, the Support Vector Machines (SVM) and Feedforward Neural Network (FNN). The sentiment scores of the movie reviews are measured by the sentiment classifier and are analyzed by statistical correlations between movie reviews and box-office success. Movie reviews are collected along with a star-rate. The dataset used in this study consists of 1,258,538 reviews from 175 films gathered from Naver Movie website (movie.naver.com). The results show that the proposed sentiment classifier outperforms Naive Bayes (NB) classifier as its accuracy is about 6% higher than NB. Furthermore, the results indicate that there are positive correlations between the star-rate and the number of audiences, which can be regarded as the box-office success of a movie. The study also shows that there is the mild, positive correlation between the sentiment scores estimated by the classifier and the number of audiences. To verify the applicability of the sentiment scores, an independent sample t-test was conducted. For this, the movies were divided into two groups using the average of sentiment scores. The two groups are significantly different in terms of the star-rated scores.

The Impact of Perceived Risks Upon Consumer Trust and Purchase Intentions (인지된 위험의 유형이 소비자 신뢰 및 온라인 구매의도에 미치는 영향)

  • Hong, Il-Yoo B.;Kim, Woo-Sung;Lim, Byung-Ha
    • Asia pacific journal of information systems
    • /
    • v.21 no.4
    • /
    • pp.1-25
    • /
    • 2011
  • Internet-based commerce has undergone an explosive growth over the past decade as consumers today find it more economical as well as more convenient to shop online. Nevertheless, the shift in the common mode of shopping from offline to online commerce has caused consumers to have worries over such issues as private information leakage, online fraud, discrepancy in product quality and grade, unsuccessful delivery, and so forth, Numerous studies have been undertaken to examine the role of perceived risk as a chief barrier to online purchases and to understand the theoretical relationships among perceived risk, trust and purchase intentions, However, most studies focus on empirically investigating the effects of trust on perceived risk, with little attention devoted to the effects of perceived risk on trust, While the influence trust has on perceived risk is worth studying, the influence in the opposite direction is equally important, enabling insights into the potential of perceived risk as a prohibitor of trust, According to Pavlou (2003), the primary source of the perceived risk is either the technological uncertainty of the Internet environment or the behavioral uncertainty of the transaction partner. Due to such types of uncertainty, an increase in the worries over the perceived risk may negatively affect trust, For example, if a consumer who sends sensitive transaction data over Internet is concerned that his or her private information may leak out because of the lack of security, trust may decrease (Olivero and Lunt, 2004), By the same token, if the consumer feels that the online merchant has the potential to profit by behaving in an opportunistic manner taking advantage of the remote, impersonal nature of online commerce, then it is unlikely that the merchant will be trusted, That is, the more the probable danger is likely to occur, the less trust and the greater need to control the transaction (Olivero and Lunt, 2004), In summary, a review of the related studies indicates that while some researchers looked at the influence of overall perceived risk on trust level, not much attention has been given to the effects of different types of perceived risk, In this context the present research aims at addressing the need to study how trust is affected by different types of perceived risk, We classified perceived risk into six different types based on the literature, and empirically analyzed the impact of each type of perceived risk upon consumer trust in an online merchant and further its impact upon purchase intentions. To meet our research objectives, we developed a conceptual model depicting the nomological structure of the relationships among our research variables, and also formulated a total of seven hypotheses. The model and hypotheses were tested using an empirical analysis based on a questionnaire survey of 206 college students. The reliability was evaluated via Cronbach's alphas, the minimum of which was found to be 0.73, and therefore the questionnaire items are all deemed reliable. In addition, the results of confirmatory factor analysis (CFA) designed to check the validity of the measurement model indicate that the convergent, discriminate, and nomological validities of the model are all acceptable. The structural equation modeling analysis to test the hypotheses yielded the following results. Of the first six hypotheses (H1-1 through H1-6) designed to examine the relationships between each risk type and trust, three hypotheses including H1-1 (performance risk ${\rightarrow}$ trust), H1-2 (psychological risk ${\rightarrow}$ trust) and H1-5 (online payment risk ${\rightarrow}$ trust) were supported with path coefficients of -0.30, -0.27 and -0.16 respectively. Finally, H2 (trust ${\rightarrow}$ purchase intentions) was supported with relatively high path coefficients of 0.73. Results of the empirical study offer the following findings and implications. First. it was found that it was performance risk, psychological risk and online payment risk that have a statistically significant influence upon consumer trust in an online merchant. It implies that a consumer may find an online merchant untrustworthy if either the product quality or the product grade does not match his or her expectations. For that reason, online merchants including digital storefronts and e-marketplaces are suggested to pursue a strategy focusing on identifying the target customers and offering products that they feel best meet performance and psychological needs of those customers. Thus, they should do their best to make it widely known that their products are of as good quality and grade as those purchased from offline department stores. In addition, it may be inferred that today's online consumers remain concerned about the security of the online commerce environment due to the repeated occurrences of hacking or private information leakage. Online merchants should take steps to remove potential vulnerabilities and provide online notices to emphasize that their website is secure. Second, consumer's overall trust was found to have a statistically significant influence on purchase intentions. This finding, which is consistent with the results of numerous prior studies, suggests that increased sales will become a reality only with enhanced consumer trust.

Exonic SNP (rs7144, 3’-UTR) in CD46 Molecule and Complement Regulatory Protein (CD46) Gene Associated with Excess Syndrome to Categorize Korean Bronchial Asthma Patients (한국인 기관지 천식 허증(虛證), 실증(實證) 환자와 CD46 유전자 다형성과의 관계)

  • Lee, Mei;Baek, Hyun-jung;Park, Eui-keun;Kim, Kwan-il;Lee, Beom-joon;Kim, Su-kang;Chung, Joo-ho;Kim, Jin-ju;Kim, Mi-a;Jung, Hee-jae;Jung, Sung-ki
    • The Journal of Internal Korean Medicine
    • /
    • v.36 no.4
    • /
    • pp.547-561
    • /
    • 2015
  • Objectives In this study, we divided Korean asthma patients into excess syndrome or deficiency syndrome groups according to clinical phenotype. Genetic analysis was conducted to investigate the association of exonic SNPs in the CD46 gene polymorphism with the clinical phenotype based on the differentiation syndrome of the bronchial asthma patients.Methods There were 95 healthy patients (control group) and 53 asthma patients. (The deficiency syndrome group included 24 and the excess syndrome group 29). We searched the exonic areas of the CD46 gene in the NCBI website SNPs with <0.01 minor allele frequency (MAF) and <0.01 heterozygosity. We finally selected two SNPs: rs138843816, Ser13Phe and rs7144, 3’-UTR. Hardy-Weinberg equilibrium was calculated using SNPStats.Results There were significant differences in the codominant 1 model and the dominant model between the healthy group and the asthma group. There were significant differences between deficiency syndrome group and the excess syndrome group in the genotype frequencies and in the codominant 1 model, the dominant model, and the log-additive model. The allele frequency of rs7144C showed a significant difference between the deficiency syndrome group and the excess syndrome group. Two-SNP haplotype analysis showed a significant difference in frequency in the deficiency syndrome group and in the excess syndrome group. There were significant differences between the healthy group and the excess syndrome group in the codominant 1 model, the dominant model, and the log-additive model. The frequency of the rs7144 C allele exhibited a significant difference in the demonstration. SNP haplotype analysis between the healthy group and the excess syndrome group showed a significant difference in the frequency of the CT haplotype and the CC haplotype.Conclusions The results indicate that two CD46 SNPs (rs138843816, Ser13Phe and rs7144, 3′–UTR) might be associated with the symptomatic excess syndrome in Korean asthma patients.

Dynamic forecasts of bankruptcy with Recurrent Neural Network model (RNN(Recurrent Neural Network)을 이용한 기업부도예측모형에서 회계정보의 동적 변화 연구)

  • Kwon, Hyukkun;Lee, Dongkyu;Shin, Minsoo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.139-153
    • /
    • 2017
  • Corporate bankruptcy can cause great losses not only to stakeholders but also to many related sectors in society. Through the economic crises, bankruptcy have increased and bankruptcy prediction models have become more and more important. Therefore, corporate bankruptcy has been regarded as one of the major topics of research in business management. Also, many studies in the industry are in progress and important. Previous studies attempted to utilize various methodologies to improve the bankruptcy prediction accuracy and to resolve the overfitting problem, such as Multivariate Discriminant Analysis (MDA), Generalized Linear Model (GLM). These methods are based on statistics. Recently, researchers have used machine learning methodologies such as Support Vector Machine (SVM), Artificial Neural Network (ANN). Furthermore, fuzzy theory and genetic algorithms were used. Because of this change, many of bankruptcy models are developed. Also, performance has been improved. In general, the company's financial and accounting information will change over time. Likewise, the market situation also changes, so there are many difficulties in predicting bankruptcy only with information at a certain point in time. However, even though traditional research has problems that don't take into account the time effect, dynamic model has not been studied much. When we ignore the time effect, we get the biased results. So the static model may not be suitable for predicting bankruptcy. Thus, using the dynamic model, there is a possibility that bankruptcy prediction model is improved. In this paper, we propose RNN (Recurrent Neural Network) which is one of the deep learning methodologies. The RNN learns time series data and the performance is known to be good. Prior to experiment, we selected non-financial firms listed on the KOSPI, KOSDAQ and KONEX markets from 2010 to 2016 for the estimation of the bankruptcy prediction model and the comparison of forecasting performance. In order to prevent a mistake of predicting bankruptcy by using the financial information already reflected in the deterioration of the financial condition of the company, the financial information was collected with a lag of two years, and the default period was defined from January to December of the year. Then we defined the bankruptcy. The bankruptcy we defined is the abolition of the listing due to sluggish earnings. We confirmed abolition of the list at KIND that is corporate stock information website. Then we selected variables at previous papers. The first set of variables are Z-score variables. These variables have become traditional variables in predicting bankruptcy. The second set of variables are dynamic variable set. Finally we selected 240 normal companies and 226 bankrupt companies at the first variable set. Likewise, we selected 229 normal companies and 226 bankrupt companies at the second variable set. We created a model that reflects dynamic changes in time-series financial data and by comparing the suggested model with the analysis of existing bankruptcy predictive models, we found that the suggested model could help to improve the accuracy of bankruptcy predictions. We used financial data in KIS Value (Financial database) and selected Multivariate Discriminant Analysis (MDA), Generalized Linear Model called logistic regression (GLM), Support Vector Machine (SVM), Artificial Neural Network (ANN) model as benchmark. The result of the experiment proved that RNN's performance was better than comparative model. The accuracy of RNN was high in both sets of variables and the Area Under the Curve (AUC) value was also high. Also when we saw the hit-ratio table, the ratio of RNNs that predicted a poor company to be bankrupt was higher than that of other comparative models. However the limitation of this paper is that an overfitting problem occurs during RNN learning. But we expect to be able to solve the overfitting problem by selecting more learning data and appropriate variables. From these result, it is expected that this research will contribute to the development of a bankruptcy prediction by proposing a new dynamic model.