• 제목/요약/키워드: Webfoot octopus pot

검색결과 4건 처리시간 0.017초

뜸줄 길이가 패류껍질어구의 유실에 미치는 영향 (Effect of length of buoy line on loss of webfoot octopus pot)

  • 이건호;조삼광;차봉진;정성재
    • 수산해양기술연구
    • /
    • 제52권4호
    • /
    • pp.299-307
    • /
    • 2016
  • This study aims to investigate effects of the length of the buoy and sand bag line on the loss of webfoot octopus pot. A numerical modeling and simulation was carried out to analyze the process that the pot gear affected by wave using the mass spring model. Through the simulation, tensions of sand bag line under various condition were investigated by length of buoy and sand bag line. The drag force and coefficient k of an artificial shell used in the webfoot octopus pot was obtained from an experiment in a circular water channel, and the coefficient k was applied to the simulation. To verify the accuracy of the simulation model, a simple test was conducted into measuring a rope tension of a hanging shell under flow. Then, the test result was compared with the simulation. The lengths of the buoy line in the simulation were 1.12, 1.41, 1.80, 2.23, 2.69, and 3.17 times of water depth. The lengths of sand bag line were 10, 20, 30, and 40 meters, and conditions of water depth were 8, 15, 22 meters. 4 meter height and 8 second period of wave were applied to all simulations. As a results, the tension of the sand bag line was decreased as the buoy and sand bag line were increased. The minimum tension of the sand bag line was appeared in conditions that the length of the buoy line is twice of water depth and the sand bag line length is over 40 meters (except in case of depth 8 meters.).

해상풍력발전단지 내 어업 가능성에 관한 고찰 (Possibility of Fishery in Offshore Wind Farms)

  • 정초영;황보규;김성철
    • 해양환경안전학회지
    • /
    • 제25권5호
    • /
    • pp.535-541
    • /
    • 2019
  • 본 연구는 해상풍력발전단지 내 어업의 가능성을 살펴보고자, 어구 및 어법이 해상풍력발전단지 내 터빈과 해저케이블에 미치는 위험도를 평가하였다. 서남해 해상풍력발전단지를 연구 대상 해역으로 설정하여, 주변 국가어항의 선박 현황을 조사하였다. 어선의 현황을 참조하여 22개의 어구 및 어법에 대하여 위험도 평가 기준을 설정하고, 전문가를 통해 위험도를 평가하였다. 위험도가 낮아 해상풍력발전단지 내에서도 조업이 가능하다고 판단되는 어구 및 어법은 외줄낚시, 대낚시, 멸치챗배였으며, 위험도가 보통으로서 조업이 가능하기는 하나, 주의가 필요하다고 생각되는 어구 및 어법은 바닥주낙, 뜬주낙, 끌낚시, 오징어채낚기, 문어단지, 주꾸미소호, 연안통발, 주목망, 낭장망, 고정자망, 유자망이었다. 위험도가 높아 해상풍력발전단지 내 조업이 어렵다고 판단되는 어구 및 어법은 형망, 빔트롤, 건착망류였으며, 위험도가 아주 높아 해상풍력발전단지 내 어업이 허용되기 어렵다고 판단되는 어구 및 어법은 안강망, 기선권현망, 오터트롤, 외끌이기선저인망, 쌍끌이기선저인망이었다.

어구의 분류 (Classification of Fishing Gear)

  • 김대안
    • 수산해양기술연구
    • /
    • 제32권1호
    • /
    • pp.33-41
    • /
    • 1996
  • In order to obtain the most favourable classification system for fishing gears, the problems in the existing systems were investigated and a new system in which the fishing method was adopted as the criterion of classification and the kinds of fishing gears were obtained by exchanging the word method into gear in the fishing methods classified newly for eliminating the problems was established. The new system to which the actual gears are arranged is as follows ; (1)Harvesting gear \circled1Plucking gears : Clamp, Tong, Wrench, etc. \circled2Sweeping gears : Push net, Coral sweep net, etc. \circled3Dredging gears : Hand dredge net, Boat dredge net, etc. (2)Sticking gears \circled1Shot sticking gears : Spear, Sharp plummet, Harpoon, etc. \circled2Pulled sticking gears : Gaff, Comb, Rake, Hook harrow, Jerking hook, etc. \circled3Left sticking gears : Rip - hook set line. (3)Angling gears \circled1Jerky angling gears (a)Single - jerky angling gears : Hand line, Pole line, etc. (b)Multiple - jerky angling gears : squid hook. \circled2Idly angling gears (a)Set angling gears : Set long line. (b)Drifted angling gears : Drift long line, Drift vertical line, etc. \circled3Dragged angling gears : Troll line. (4)Shelter gears : Eel tube, Webfoot - octopus pot, Octopus pot, etc. (5)Attracting gears : Fishing basket. (6)Cutoff gears : Wall, Screen net, Window net, etc. (7)Guiding gears \circled1Horizontally guiding gears : Triangular set net, Elliptic set net, Rectangular set net, Fish weir, etc. \circled2Vertically guiding gears : Pound net. \circled3Deeply guiding gears : Funnel net. (8)Receiving gears \circled1Jumping - fish receiving gears : Fish - receiving scoop net, Fish - receiving raft, etc. \circled2Drifting - fish receiving gears (a)Set drifting - fish receiving gears : Bamboo screen, Pillar stow net, Long stow net, etc. (b)Movable drifting - fish receiving gears : Stow net. (9)Bagging gears \circled1Drag - bagging gears (a)Bottom - drag bagging gears : Bottom otter trawl, Bottom beam trawl, Bottom pair trawl, etc. (b)Midwater - drag gagging gears : Midwater otter trawl, Midwater pair trawl, etc. (c)Surface - drag gagging gears : Anchovy drag net. \circled2Seine - bagging gears (a)Beach - seine bagging gears : Skimming scoop net, Beach seine, etc. (b)Boat - seine bagging gears : Boat seine, Danish seine, etc. \circled3Drive - bagging gears : Drive - in dustpan net, Inner drive - in net, etc. (10)Surrounding gears \circled1Incomplete surrounding gears : Lampara net, Ring net, etc. \circled2Complete surrounding gears : Purse seine, Round haul net, etc. (11)Covering gears \circled1Drop - type covering gears : Wooden cover, Lantern net, etc. \circled2Spread - type covering gears : Cast net. (12)Lifting gears \circled1Wait - lifting gears : Scoop net, Scrape net, etc. \circled2Gatherable lifting gears : Saury lift net, Anchovy lift net, etc. (13)Adherent gears \circled1Gilling gears (a)Set gilling gears : Bottom gill net, Floating gill net. (b)Drifted gilling gears : Drift gill net. (c)Encircled gilling gears : Encircled gill net. (d)Seine - gilling gears : Seining gill net. (e)Dragged gilling gears : Dragged gill net. \circled2Tangling gears (a)Set tangling gears : Double trammel net, Triple trammel net, etc. (b)Encircled tangling gears : Encircled tangle net. (c)Dragged tangling gears : Dragged tangle net. \circled3Restrainting gears (a)Drifted restrainting gears : Pocket net(Gen - type net). (b)Dragged restrainting gears : Dragged pocket net. (14)Sucking gears : Fish pumps.

  • PDF

패류껍질어업에서 사용 중인 멍의 형태적 특성에 따른 고정력의 차이 (Difference of holding power of concrete weight used in shellfish shell fishery by its shape characteristics)

  • 이건호;조삼광;김인옥;차봉진;정성재
    • 수산해양기술연구
    • /
    • 제54권1호
    • /
    • pp.25-31
    • /
    • 2018
  • In this study, the differences of holding power according to the shape and weight distribution of concrete weight used in shellfish shell fishery were investigated through the experiments. To investigate the differences in shape, five bar-shaped concrete weights with the same length and different cross-sectional shapes were produced. The sectional shape of each weight was square, triangle, circle, small cross, and large cross (SQ, TR, CI, CR-S, CR-L). Ten rectangular parallelepiped weights with different bottom area and cross-sectional area were produced. To investigate the differences by the weight distribution, the holding power on the square model (SQ) with six 50 g weights at different positions was investigated. All the holding power was obtained by measuring the tensile force generated when the concrete weight was pulled at a constant speed on the sand. As a result, there were no differences in holding power between the ten rectangular weights. However, the experiment on weights with different cross-sectional shapes showed differences in holding power. The holding power was higher in the order of CR-L > CR-S > CI > TR > SQ. In the weight distribution test, the holding power was higher as the front side of the weight was heavier. Generally, the frictional force is the same even if the shape is different, when two objects have the same value in the weight and the roughness. On the other hand, it seems to have a large impact when the shape of the bottom is deformed in the course of pulling the object. Particularly, the larger the degree of protrusion like cruciform weights, the more the holding power increased while deeply digging the bottom. It is also likely that the holding power increases as the front weight increases.