오늘날 스마트폰의 보급과 SNS의 발달로 정형/비정형 빅데이터는 기하급수적으로 증가하였다. 이러한 빅데이터를 잘 분석한다면 미래 예측도 가능할 만큼 훌륭한 정보를 얻을 수 있다. 빅데이터를 분석하기 위해서는 먼저 대용량의 데이터 수집이 필요하다. 이러한 데이터가 가장 많이 저장되어 있는 곳은 바로 웹 페이지다. 하지만 데이터의 양이 방대하기 때문에 유용한 정보를 가진 데이터가 많은 만큼 필요하지 않은 정보를 가진 데이터도 많이 존재한다. 그렇기 때문에 필요하지 않은 정보를 가진 데이터는 거르고 유용한 정보를 가진 데이터만을 수집하는 효율적인 데이터 수집의 중요성이 대두되었다. 웹 크롤러는 네트워크 대역폭, 시간적인 문제, 하드웨어적인 저장소 등의 제약으로 인해 모든 페이지를 다운로드 할 수 없다. 그렇기 때문에 원하는 내용과 관련 없는 많은 페이지들의 방문은 피하며 가능한 빠른 시간 내에 중요한 페이지만을 다운로드해야한다. 이 논문은 위와 같은 이슈의 해결을 돕고자한다. 먼저 기본적인 웹 크롤링 알고리즘들을 소개한다. 각 알고리즘마다 시간복잡도와 장단점을 설명하며 비교 및 분석한다. 다음으로 기본적인 웹 크롤링 알고리즘의 단점을 개선한 최신 웹 크롤링 알고리즘들을 소개한다. 더불어 최근 연구 흐름을 보면 감성어휘 수집과 같은 특수한 목적을 가진 웹 크롤링 알고리즘의 대한 연구가 활발히 이루어지고 있다. 특수 목적을 가진 웹 크롤링 알고리즘에 대한 연구로써 선제적인 웹 크롤링 기법으로 감성 반응 웹 크롤링(Sentiment-aware Web Crawling) 기법을 소개한다. 실험결과 데이터의 크기가 커질수록 기존방안보다 높은 성능을 보였고 데이터베이스의 저장 공간도 절약되었다.
수많은 웹문서 중에서 원하는 문서만을 수집하는 것은 쉽지 않다. 이것을 해결하는 한 방법은 원하는 분야의 정보를 많이 제공하는 사이트에서 원하는 부분만 골라서 수집하는 것이다. 본 논문에서는 웹사이트의 URL 패턴을 XML 기반의 스크립트로 정의하여, 필요한 웹 문서만을 지능적으로 수집하는 방안을 제안한다. 제안하는 수집 방안은 데이터베이스와 같은 구조화된 자료를 정보로 제공하는 사이트에 대해서 매우 빠르고 효율적으로 적용될 수 있다. 본 논문에서는 제안하는 방법을 적용하여 5만개 이상의 웹 문서를 수집하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권10호
/
pp.2809-2821
/
2023
Effective recommendation of similar business groups is a critical factor in obtaining market information for companies. In this study, we propose a novel method for enhancing similar business group recommendation by incorporating derivative criteria and web crawling. We use employment announcements, employment incentives, and corporate vocational training information to derive additional criteria for similar business group selection. Web crawling is employed to collect data related to the derived criteria from 'credit jobs' and 'worknet' sites. We compare the efficiency of different datasets and machine learning methods, including XGBoost, LGBM, Adaboost, Linear Regression, K-NN, and SVM. The proposed model extracts derivatives that reflect the financial and scale characteristics of the company, which are then incorporated into a new set of recommendation criteria. Similar business groups are selected using a Euclidean distance-based model. Our experimental results show that the proposed method improves the accuracy of similar business group recommendation. Overall, this study demonstrates the potential of incorporating derivative criteria and web crawling to enhance similar business group recommendation and obtain market information more efficiently.
본 논문에서는 소비자들이 편의점에서 진행 중인 행사상품에 대해 접근하기 쉬운 웹페이지를 제작하였다. 제작하는 과정에서 행사상품의 데이터를 추출하는 두 가지 크롤링 방식인 정적 크롤링과 동적 크롤링을 비교 및 활용하였다. 정적 크롤링은 홈페이지에서 정적인 데이터를 수집하는 추출 방식이고 동적 크롤링은 웹 페이지에서 동적으로 생성되는 페이지의 데이터를 수집하는 추출하는 방식이다. 두 크롤링에 대한 비교를 통해 행사상품 데이터를 추출하는 데에 있어 어떤 크롤링 방식이 더 효과적인 방식인지에 대해 연구하였다. 그 중 효과적인 정적 크롤링을 이용해 웹 페이지를 제작하였으며, 소비자들이 더 손쉽게 확인할 수 있도록 1+1, 2+1 상품들을 카테고리화 하였고 검색기능을 넣어 웹페이지를 제작하였다.
인터넷을 이용하는 사용자들은 원하는 정보를 획득하고 타인들과 소통하기 위한 방법으로 소셜 네트워크 서비스를 이용한다. SNS는 사용자별로 차별화된 기능을 제공함으로써 수요자를 증가시키지만 이를 활용하는 사용자들은 무분별한 콘텐츠를 접함으로써 사용자 인터페이스에 대한 불편함은 더해가고 있다. 본 연구는 SNS를 이용하는 사용자들의 사용자 편이성을 증가하고 콘텐츠 접근성을 강화하는 방안으로 원하는 관심사만 자동으로 수집하여 열람하도록 JAVA WEB CRAWLING을 활용하여 시스템을 개발하였다.
The Internet has been expanded constantly and greatly such that we are having vast number of web pages with dynamic changes. Especially, the fast development of wireless communication technology and the wide spread of various smart devices enable information being created at speed and changed anywhere, anytime. In this situation, web crawling, also known as web scraping, which is an organized, automated computer system for systematically navigating web pages residing on the web and for automatically searching and indexing information, has been inevitably used broadly in many fields today. This paper aims to implement a prototype web crawler with Python and to improve the execution speed using threads on multicore CPU. The results of the implementation confirmed the operation with crawling reference web sites and the performance improvement by evaluating the execution speed on the different thread configurations on multicore CPU.
웹 크롤러는 웹에서 링크를 따라다니며 웹 페이지들을 자동으로 다운로드하는 프로그램으로 주로 웹 환경을 연구하거나 검색 엔진을 만들기 위해 사용된다. 기존의 연구들에서는 웹 크롤러가 인기 있는 웹 페이지들을 먼저 크롤링 할 수 있도록 몇 가지 방법들이 제안되었으나 그래프 이론 분야에서 연구되어 온 몇몇 그래프 탐색 기법들은 아직 웹 크롤링 방법으로 고려되지 않았다. 이 논문에서는 잘 알려진 너비 우선 탐색, 깊이 우선 탐색 뿐 아니라 사전식 너비 우선 탐색, 사전식 깊이 우선 탐색 및 최대 크기 탐색을 웹 크롤링 방법으로 고려하여 이 중에서 선형적인 시간복잡도를 가지면서도 인기 있는 웹 페이지를 효율적으로 수집할 수 있는 웹 크롤링 방법을 찾는다. 특히 선형 구현이 단순하지 않은 최대 크기 탐색과 사전식 너비 우선 탐색에 대해서는 분할 정제 방법을 이용한 선형 시간 웹 크롤링 방법을 제시한다. 실험 결과는 최대 크기 탐색이 다른 그래프 탐색 방법에 비해 시간 복잡도 및 크롤링 된 페이지들의 질에 있어서 바람직한 성질을 가짐을 보여준다.
웹 크롤링 데이터를 이용한 실시간 시스템은 원격지의 데이터와 동일한 데이터베이스의 데이터를 사용자에게 제공해야 하며, 이를 위해서 웹 크롤러는 원격지 데이터의 변경 여부를 확인하기 위해 원격 서버에 반복적인 HTTP(HyperText Transfer Protocol) 요청을 수행해야 한다. 이 과정은 크롤링 서버와 원격 서버의 네트워크 부하를 일으키며 과도한 트래픽 발생 등의 문제의 원인이 된다. 이러한 문제점을 해결하기 위해 본 논문에서는 사용자 이벤트를 기반으로 크롤링 서버의 데이터와 다중 원격지 데이터와의 동일성을 유지하는 신뢰성을 확보함과 동시에 네트워크의 과부하를 줄일 수 있는 실시간 웹 크롤링 기법을 제안한다. 제안된 방법은 단위 데이터와 목록 데이터를 요청하는 이벤트를 기반으로 크롤링 프로세스를 수행한다. 실험 결과, 제안된 방법은 기존 웹 크롤러에서의 네크워크 트래픽 과부하를 줄이면서 데이터의 신뢰성을 확보할 수 있음을 확인하였다. 향후에는 이벤트 기반 크롤링과 시간 기반 크롤링에 대한 융합에 대한 연구가 필요하다.
오늘날 웹상의 본문 수집에 주로 이용되는 웹 크롤러는 연구자가 직접 HTML 문서의 태그와 스타일을 분석한 후 수집 채널마다 다른 수집 로직을 구현해야 하므로 유지 관리 및 확장이 어렵다. 이러한 문제점을 해결하려면 웹 크롤러는 구조가 서로 다른 HTML 문서를 동일한 구조로 정형화하여 본문을 수집할 수 있어야 한다. 따라서 본 논문에서는 태그 경로 및 텍스트 출현 빈도를 기반으로 HTML 문서를 정형화하여 하나의 수집 로직으로 본문을 수집하는 웹크롤링 시스템인 WCTT(Web Crawling system based on Tag path and Text appearance frequency)를 설계 및 구현하였다. WCTT는 모든 수집 채널에서 동일한 로직으로 본문을 수집하므로 유지 관리 및 수집 채널의 확장이 용이하다. 또한, 키워드 네트워크 분석 등을 위해 불용어를 제거하고 명사만 추출하는 전처리 기능도 제공한다.
웹 크롤러는 서버의 부담을 최소화하면서도 최신의 데이터를 웹사이트로부터 수집하고 유지해야 한다. 빅데이터 시대와 같이 데이터가 폭발적으로 증가하는 시대에 데이터 소스로부터 자주 모든 데이터를 추출하는 것은 서버에 심각한 부담을 주게 된다. 무선통신 기술과 다양한 스마트 기기들의 확산으로 정보가 급속도로 생성되고 있으며, 어디에서나 어느 시간이나 지속적으로 생성 및 변경되고 있다. 웹크롤러는 이러한 상황을 감안하여 최신의 정보를 적은 오버헤드로 유지해 나가는 것이 중요한 이슈로 부각되고 있다. 본 논문에서는 웹사이트의 변경사항을 체크할 수 있는 효과적인 방안과 웹사이트의 수집 주기를 동적으로 변경함으로써 적은 비용으로 최신성을 유지할 수 있는 방안을 제시한다. 핵심 아이디어는 과거 히스토리로부터 웹사이트 변경이 집중되는 시간을 파악하여 웹수집 주기를 결정하는데 반영한다는 점이다. 논문에서는 특정 웹사이트의 데이터를 추출하는 Java 크롤러를 개발하고, 제안된 방식과 기존 방식의 유용성을 비교하였다. 제안된 기법을 사용하면 정적인 방식보다 서버 오버헤드를 절반정도(46.2%)로 줄이면서도 최신성을 더욱 높게 보장할 수 있게 된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.