• Title/Summary/Keyword: Web-based Visualization

Search Result 246, Processing Time 0.025 seconds

Construction of Gene Network System Associated with Economic Traits in Cattle (소의 경제형질 관련 유전자 네트워크 분석 시스템 구축)

  • Lim, Dajeong;Kim, Hyung-Yong;Cho, Yong-Min;Chai, Han-Ha;Park, Jong-Eun;Lim, Kyu-Sang;Lee, Seung-Su
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.904-910
    • /
    • 2016
  • Complex traits are determined by the combined effects of many loci and are affected by gene networks or biological pathways. Systems biology approaches have an important role in the identification of candidate genes related to complex diseases or traits at the system level. The gene network analysis has been performed by diverse types of methods such as gene co-expression, gene regulatory relationships, protein-protein interaction (PPI) and genetic networks. Moreover, the network-based methods were described for predicting gene functions such as graph theoretic method, neighborhood counting based methods and weighted function. However, there are a limited number of researches in livestock. The present study systemically analyzed genes associated with 102 types of economic traits based on the Animal Trait Ontology (ATO) and identified their relationships based on the gene co-expression network and PPI network in cattle. Then, we constructed the two types of gene network databases and network visualization system (http://www.nabc.go.kr/cg). We used a gene co-expression network analysis from the bovine expression value of bovine genes to generate gene co-expression network. PPI network was constructed from Human protein reference database based on the orthologous relationship between human and cattle. Finally, candidate genes and their network relationships were identified in each trait. They were typologically centered with large degree and betweenness centrality (BC) value in the gene network. The ontle program was applied to generate the database and to visualize the gene network results. This information would serve as valuable resources for exploiting genomic functions that influence economically and agriculturally important traits in cattle.

Implementation of Reporting Tool Supporting OLAP and Data Mining Analysis Using XMLA (XMLA를 사용한 OLAP과 데이타 마이닝 분석이 가능한 리포팅 툴의 구현)

  • Choe, Jee-Woong;Kim, Myung-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.3
    • /
    • pp.154-166
    • /
    • 2009
  • Database query and reporting tools, OLAP tools and data mining tools are typical front-end tools in Business Intelligence environment which is able to support gathering, consolidating and analyzing data produced from business operation activities and provide access to the result to enterprise's users. Traditional reporting tools have an advantage of creating sophisticated dynamic reports including SQL query result sets, which look like documents produced by word processors, and publishing the reports to the Web environment, but data source for the tools is limited to RDBMS. On the other hand, OLAP tools and data mining tools have an advantage of providing powerful information analysis functions on each own way, but built-in visualization components for analysis results are limited to tables or some charts. Thus, this paper presents a system that integrates three typical front-end tools to complement one another for BI environment. Traditional reporting tools only have a query editor for generating SQL statements to bring data from RDBMS. However, the reporting tool presented by this paper can extract data also from OLAP and data mining servers, because editors for OLAP and data mining query requests are added into this tool. Traditional systems produce all documents in the server side. This structure enables reporting tools to avoid repetitive process to generate documents, when many clients intend to access the same dynamic document. But, because this system targets that a few users generate documents for data analysis, this tool generates documents at the client side. Therefore, the tool has a processing mechanism to deal with a number of data despite the limited memory capacity of the report viewer in the client side. Also, this reporting tool has data structure for integrating data from three kinds of data sources into one document. Finally, most of traditional front-end tools for BI are dependent on data source architecture from specific vendor. To overcome the problem, this system uses XMLA that is a protocol based on web service to access to data sources for OLAP and data mining services from various vendors.

Comparative Study on the Methodology of Motor Vehicle Emission Calculation by Using Real-Time Traffic Volume in the Kangnam-Gu (자동차 대기오염물질 산정 방법론 설정에 관한 비교 연구 (강남구의 실시간 교통량 자료를 이용하여))

  • 박성규;김신도;이영인
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.4
    • /
    • pp.35-47
    • /
    • 2001
  • Traffic represents one of the largest sources of primary air pollutants in urban area. As a consequence. numerous abatement strategies are being pursued to decrease the ambient concentration of pollutants. A characteristic of most of the these strategies is a requirement for accurate data on both the quantity and spatial distribution of emissions to air in the form of an atmospheric emission inventory database. In the case of traffic pollution, such an inventory must be compiled using activity statistics and emission factors for vehicle types. The majority of inventories are compiled using passive data from either surveys or transportation models and by their very nature tend to be out-of-date by the time they are compiled. The study of current trends are towards integrating urban traffic control systems and assessments of the environmental effects of motor vehicles. In this study, a methodology of motor vehicle emission calculation by using real-time traffic data was studied. A methodology for estimating emissions of CO at a test area in Seoul. Traffic data, which are required on a street-by-street basis, is obtained from induction loops of traffic control system. It was calculated speed-related mass of CO emission from traffic tail pipe of data from traffic system, and parameters are considered, volume, composition, average velocity, link length. And, the result was compared with that of a method of emission calculation by VKT(Vehicle Kilometer Travelled) of vehicles of category.

  • PDF

A Comparative Study about Industrial Structure Feature between TL Carriers and LTL Carriers (구역화물운송업과 노선화물운송업의 산업구조 특성 비교)

  • 민승기
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.1
    • /
    • pp.101-114
    • /
    • 2001
  • Transportation enterprises should maintain constant and qualitative operation. Thus, in short period, transportation enterprises don't change supply in accordance with demand. In the result, transportation enterprises don't reduce operation in spite of management deficit at will. In freight transportation type, less-than-truckload(LTL) has more relation with above transportation feature than truckload(TL) does. Because freight transportation supply of TL is more flexible than that of LTL in correspondence of freight transportation demand. Relating to above mention, it appears that shortage of road and freight terminal of LTL is larger than that of TL. Especially in road and freight terminal comparison, shortage of freight terminal is larger than that of road. Shortage of road is the largest in 1990, and improved after-ward. But shortage of freight terminal is serious lately. So freight terminal needs more expansion than road, and shows better investment condition than road. Freight terminal expansion brings road expansion in LTL, on the contrary, freight terminal expansion substitutes freight terminal for road in TL. In transportation revenue, freight terminal's contribution to LTL is larger than that to TL. However, when we adjust quasi-fixed factor - road and freight terminal - to optimal level in the long run, in TL, diseconomies of scale becomes large, but in LTL, economies of scale becomes large. Consequently, it is necessary for TL to make counterplans to activate management of small size enterprises and owner drivers. And LTL should make use of economies of scale by solving the problem, such as nonprofit route, excess of rental freight handling of office, insufficiency of freight terminal, shortage of driver, and unpreparedness of freight insurance.

  • PDF

Analysis of Twitter for 2012 South Korea Presidential Election by Text Mining Techniques (텍스트 마이닝을 이용한 2012년 한국대선 관련 트위터 분석)

  • Bae, Jung-Hwan;Son, Ji-Eun;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.141-156
    • /
    • 2013
  • Social media is a representative form of the Web 2.0 that shapes the change of a user's information behavior by allowing users to produce their own contents without any expert skills. In particular, as a new communication medium, it has a profound impact on the social change by enabling users to communicate with the masses and acquaintances their opinions and thoughts. Social media data plays a significant role in an emerging Big Data arena. A variety of research areas such as social network analysis, opinion mining, and so on, therefore, have paid attention to discover meaningful information from vast amounts of data buried in social media. Social media has recently become main foci to the field of Information Retrieval and Text Mining because not only it produces massive unstructured textual data in real-time but also it serves as an influential channel for opinion leading. But most of the previous studies have adopted broad-brush and limited approaches. These approaches have made it difficult to find and analyze new information. To overcome these limitations, we developed a real-time Twitter trend mining system to capture the trend in real-time processing big stream datasets of Twitter. The system offers the functions of term co-occurrence retrieval, visualization of Twitter users by query, similarity calculation between two users, topic modeling to keep track of changes of topical trend, and mention-based user network analysis. In addition, we conducted a case study on the 2012 Korean presidential election. We collected 1,737,969 tweets which contain candidates' name and election on Twitter in Korea (http://www.twitter.com/) for one month in 2012 (October 1 to October 31). The case study shows that the system provides useful information and detects the trend of society effectively. The system also retrieves the list of terms co-occurred by given query terms. We compare the results of term co-occurrence retrieval by giving influential candidates' name, 'Geun Hae Park', 'Jae In Moon', and 'Chul Su Ahn' as query terms. General terms which are related to presidential election such as 'Presidential Election', 'Proclamation in Support', Public opinion poll' appear frequently. Also the results show specific terms that differentiate each candidate's feature such as 'Park Jung Hee' and 'Yuk Young Su' from the query 'Guen Hae Park', 'a single candidacy agreement' and 'Time of voting extension' from the query 'Jae In Moon' and 'a single candidacy agreement' and 'down contract' from the query 'Chul Su Ahn'. Our system not only extracts 10 topics along with related terms but also shows topics' dynamic changes over time by employing the multinomial Latent Dirichlet Allocation technique. Each topic can show one of two types of patterns-Rising tendency and Falling tendencydepending on the change of the probability distribution. To determine the relationship between topic trends in Twitter and social issues in the real world, we compare topic trends with related news articles. We are able to identify that Twitter can track the issue faster than the other media, newspapers. The user network in Twitter is different from those of other social media because of distinctive characteristics of making relationships in Twitter. Twitter users can make their relationships by exchanging mentions. We visualize and analyze mention based networks of 136,754 users. We put three candidates' name as query terms-Geun Hae Park', 'Jae In Moon', and 'Chul Su Ahn'. The results show that Twitter users mention all candidates' name regardless of their political tendencies. This case study discloses that Twitter could be an effective tool to detect and predict dynamic changes of social issues, and mention-based user networks could show different aspects of user behavior as a unique network that is uniquely found in Twitter.

A Proposal of a Keyword Extraction System for Detecting Social Issues (사회문제 해결형 기술수요 발굴을 위한 키워드 추출 시스템 제안)

  • Jeong, Dami;Kim, Jaeseok;Kim, Gi-Nam;Heo, Jong-Uk;On, Byung-Won;Kang, Mijung
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.1-23
    • /
    • 2013
  • To discover significant social issues such as unemployment, economy crisis, social welfare etc. that are urgent issues to be solved in a modern society, in the existing approach, researchers usually collect opinions from professional experts and scholars through either online or offline surveys. However, such a method does not seem to be effective from time to time. As usual, due to the problem of expense, a large number of survey replies are seldom gathered. In some cases, it is also hard to find out professional persons dealing with specific social issues. Thus, the sample set is often small and may have some bias. Furthermore, regarding a social issue, several experts may make totally different conclusions because each expert has his subjective point of view and different background. In this case, it is considerably hard to figure out what current social issues are and which social issues are really important. To surmount the shortcomings of the current approach, in this paper, we develop a prototype system that semi-automatically detects social issue keywords representing social issues and problems from about 1.3 million news articles issued by about 10 major domestic presses in Korea from June 2009 until July 2012. Our proposed system consists of (1) collecting and extracting texts from the collected news articles, (2) identifying only news articles related to social issues, (3) analyzing the lexical items of Korean sentences, (4) finding a set of topics regarding social keywords over time based on probabilistic topic modeling, (5) matching relevant paragraphs to a given topic, and (6) visualizing social keywords for easy understanding. In particular, we propose a novel matching algorithm relying on generative models. The goal of our proposed matching algorithm is to best match paragraphs to each topic. Technically, using a topic model such as Latent Dirichlet Allocation (LDA), we can obtain a set of topics, each of which has relevant terms and their probability values. In our problem, given a set of text documents (e.g., news articles), LDA shows a set of topic clusters, and then each topic cluster is labeled by human annotators, where each topic label stands for a social keyword. For example, suppose there is a topic (e.g., Topic1 = {(unemployment, 0.4), (layoff, 0.3), (business, 0.3)}) and then a human annotator labels "Unemployment Problem" on Topic1. In this example, it is non-trivial to understand what happened to the unemployment problem in our society. In other words, taking a look at only social keywords, we have no idea of the detailed events occurring in our society. To tackle this matter, we develop the matching algorithm that computes the probability value of a paragraph given a topic, relying on (i) topic terms and (ii) their probability values. For instance, given a set of text documents, we segment each text document to paragraphs. In the meantime, using LDA, we can extract a set of topics from the text documents. Based on our matching process, each paragraph is assigned to a topic, indicating that the paragraph best matches the topic. Finally, each topic has several best matched paragraphs. Furthermore, assuming there are a topic (e.g., Unemployment Problem) and the best matched paragraph (e.g., Up to 300 workers lost their jobs in XXX company at Seoul). In this case, we can grasp the detailed information of the social keyword such as "300 workers", "unemployment", "XXX company", and "Seoul". In addition, our system visualizes social keywords over time. Therefore, through our matching process and keyword visualization, most researchers will be able to detect social issues easily and quickly. Through this prototype system, we have detected various social issues appearing in our society and also showed effectiveness of our proposed methods according to our experimental results. Note that you can also use our proof-of-concept system in http://dslab.snu.ac.kr/demo.html.