• 제목/요약/키워드: Web-based Business Process

검색결과 292건 처리시간 0.025초

유통업 IMC 기획모델의 전략적 활용에 관한 연구 (A Study on the Strategic Use of an IMC Planning Model for the Distribution Industry)

  • 모선종;송인암
    • 마케팅과학연구
    • /
    • 제18권2호
    • /
    • pp.113-145
    • /
    • 2008
  • 점점 치열해지는 유통업의 경쟁환경 속에서 유통업의 마케팅 효율성 제고를 위해 유통업 IMC 기획모델에 대한 연구와 이 모델의 전략적 활용에 대한 연구가 필요하다. 유통업 IMC 기획모델은 선행연구를 통해 IMC 목표수립, 상황분석(고객분석, 경쟁분석, 자사분석), 고객 데이터분석, 접촉관리, 예산수립, IMC 전략개발, IMC 믹스와 IMC 실행, 평가시스템, 피드백 단계로 구분하여 설정하였다. 유통업 IMC 기획모델의 전략적 활용을 위해서 연구모형을 설정하여 IMC 활동(광고, 판촉, DM, PR, 인적판매, 인터넷, 모바일, VMD, 구전)과 IMC 태도의 관계, IMC 태도와 브랜드 충성도의 관계, IMC 태도와 재구매 의도의 관계, 브랜드 충성도와 재구매 의도의 관계에 대한 가설 검증을 하였다. 가설 검증 결과 IMC 활동은 인터넷을 제외하고 IMC 태도에 유의한 영향을 미치고 그 유의 수준의 차이를 볼 때 IMC 믹스 전략 전개에 있어 체계적인 접근이 필요한 것을 알 수 있다. 또한 IMC 활동이 향후 유통기업의 마케팅 방향에 대한 주요한 변수임을 알 수 있다. 이는 브랜드 충성도와 재구매 의도 관계가 매우 유의한 결과로 나타난 점과 함께 고려해야 한다. 결론적으로 유통업의 IMC 수단들의 통합적이고 일관된 활동이 브랜드 충성도와 재구매 의도에 미치는 영향력이 매우 큰 것으로 나타났다.

  • PDF

쇼핑 웹사이트 탐색 유형과 방문 패턴 분석 (Analysis of shopping website visit types and shopping pattern)

  • 최경빈;남기환
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.85-107
    • /
    • 2019
  • 온라인 소비자는 쇼핑 웹사이트에서 특정 제품군이나 브랜드에 속한 제품들을 둘러보고 구매를 진행할 수 있고, 혹은 단순히 넓은 범위의 탐색 반경을 보이며 여러 페이지들을 돌아보다 구매를 진행하지 않고 이탈할 수 있다. 이러한 온라인 소비자의 행동과 구매에 관련된 연구는 꾸준히 진행되어왔으며, 실무에서도 소비자들의 행동 데이터를 바탕으로 한 서비스 및 어플리케이션이 개발되고 있다. 최근에는 빅데이터 기술의 발달로 소비자 개인 단위의 맞춤화 전략 및 추천 시스템이 활용되고 있으며 사용자의 쇼핑 경험을 최적화하기 위한 시도가 진행되고 있다. 하지만 이와 같은 시도에도 온라인 소비자가 실제로 웹사이트를 방문해 제품 구매 단계까지 전환될 확률은 매우 낮은 실정이다. 이는 온라인 소비자들이 단지 제품 구매를 위해 웹사이트를 방문하는 것이 아니라 그들의 쇼핑 동기 및 목적에 따라 웹사이트를 다르게 활용하고 탐색하기 때문이다. 따라서 단지 구매가 진행되는 방문 외에도 다양한 방문 형태를 분석하는 것은 온라인 소비자들의 행동을 이해하는데 중요하다고 할 수 있다. 이러한 관점에서 본 연구에서는 온라인 소비자의 탐색 행동의 다양성과 복잡성을 설명하기 위해 실제 E-commerce 기업의 클릭스트림 데이터를 기반으로 세션 단위의 클러스터링 분석을 진행해 탐색 행동을 유형화하였다. 이를 통해 각 유형별로 상세 단위의 탐색 행동과 구매 여부가 차이가 있음을 확인하였다. 또한 소비자 개인이 여러 방문에 걸친 일련의 탐색 유형에 대한 패턴을 분석하기 위해 순차 패턴 마이닝 기법을 활용하였으며, 같은 기간 내에 제품 구매까지 완료한 소비자와 구매를 진행하지 않은 채 방문만 진행한 소비자들의 탐색패턴에 대한 차이를 확인할 수 있었다. 본 연구의 시사점은 대규모의 클릭스트림 데이터를 활용해 온라인 소비자의 탐색 유형을 분석하고 이에 대한 패턴을 분석해 구매 과정 상의 행동을 데이터 기반으로 설명하였다는 점에 있다. 또한 온라인 소매 기업은 다양한 형태의 탐색 유형에 맞는 마케팅 전략 및 추천을 통해 구매 전환 개선을 시도할 수 있으며, 소비자의 탐색 패턴의 변화를 통해 전략의 효과를 평가할 수 있을 것이다.

클라우드 환경에서 MongoDB 기반의 비정형 로그 처리 시스템 설계 및 구현 (Design and Implementation of MongoDB-based Unstructured Log Processing System over Cloud Computing Environment)

  • 김명진;한승호;최운;이한구
    • 인터넷정보학회논문지
    • /
    • 제14권6호
    • /
    • pp.71-84
    • /
    • 2013
  • 컴퓨터 시스템 운용 간에 발생하는 많은 정보들이 기록되는 로그데이터는 컴퓨터 시스템 운용 점검, 프로세스의 최적화, 사용자 최적화 맞춤형 제공 등 다방면으로 활용되고 있다. 본 논문에서는 다양한 종류의 로그데이터들 중에서 은행에서 발생하는 대용량의 로그데이터를 처리하기 위한 클라우드 환경 하에서의 MongoDB 기반 비정형 로그 처리시스템을 제안한다. 은행업무간 발생하는 대부분의 로그데이터는 고객의 업무처리 프로세스 간에 발생하며, 고객 업무 프로세스 처리에 따른 로그데이터를 수집, 저장, 분류, 분석하기 위해서는 별도로 로그데이터를 처리하는 시스템을 구축해야만 한다. 하지만 기존 컴퓨팅환경 하에서는 폭발적으로 증가하는 대용량 비정형 로그데이터 처리를 위한 유연한 스토리지 확장성 기능, 저장된 비정형 로그데이터를 분류, 분석 처리할 수 있는 기능을 구현하기가 매우 어렵다. 이에 따라 본 논문에서는 클라우드 컴퓨팅 기술을 도입하여 기존 컴퓨팅 인프라 환경의 분석 도구 및 관리체계에서 처리하기 어려웠던 비정형 로그데이터를 처리하기 위한 클라우드 환경기반의 로그데이터 처리시스템을 제안하고 구현하였다. 제안한 본 시스템은 IaaS(Infrastructure as a Service) 클라우드 환경을 도입하여 컴퓨팅 자원의 유연한 확장성을 제공하며 실제로, 로그데이터가 장기간 축적되거나 급격하게 증가하는 상황에서 스토리지, 메모리 등의 자원을 신속성 있고 유연하게 확장을 할 수 있는 기능을 포함한다. 또한, 축적된 비정형 로그데이터의 실시간 분석이 요구되어질 때 기존의 분석도구의 처리한계를 극복하기 위해 본 시스템은 하둡 (Hadoop) 기반의 분석모듈을 도입함으로써 대용량의 로그데이터를 빠르고 신뢰성 있게 병렬 분산 처리할 수 있는 기능을 제공한다. 게다가, HDFS(Hadoop Distributed File System)을 도입함으로써 축적된 로그데이터를 블록단위로 복제본을 생성하여 저장관리하기 때문에 본 시스템은 시스템 장애와 같은 상황에서 시스템이 멈추지 않고 작동할 수 있는 자동복구 기능을 제공한다. 마지막으로, 본 시스템은 NoSQL 기반의 MongoDB를 이용하여 분산 데이터베이스를 구축함으로써 효율적으로 비정형로그데이터를 처리하는 기능을 제공한다. MySQL과 같은 관계형 데이터베이스는 복잡한 스키마 구조를 가지고 있기 때문에 비정형 로그데이터를 처리하기에 적합하지 않은 구조를 가지고 있다. 또한, 관계형 데이터베이스의 엄격한 스키마 구조는 장기간 데이터가 축적되거나, 데이터가 급격하게 증가할 때 저장된 데이터를 분할하여 여러 노드에 분산시키는 노드 확장이 어렵다는 문제점을 가지고 있다. NoSQL은 관계형 데이터베이스에서 제공하는 복잡한 연산을 지원하지는 않지만 데이터가 빠르게 증가할 때 노드 분산을 통한 데이터베이스 확장이 매우 용이하며 비정형 데이터를 처리하는데 매우 적합한 구조를 가지고 있는 비관계형 데이터베이스이다. NoSQL의 데이터 모델은 주로 키-값(Key-Value), 컬럼지향(Column-oriented), 문서지향(Document-Oriented)형태로 구분되며, 제안한 시스템은 스키마 구조가 자유로운 문서지향(Document-Oriented) 데이터 모델의 대표 격인 MongoDB를 도입하였다. 본 시스템에 MongoDB를 도입한 이유는 유연한 스키마 구조에 따른 비정형 로그데이터 처리의 용이성뿐만 아니라, 급격한 데이터 증가에 따른 유연한 노드 확장, 스토리지 확장을 자동적으로 수행하는 오토샤딩 (AutoSharding) 기능을 제공하기 때문이다. 본 논문에서 제안하는 시스템은 크게 로그 수집기 모듈, 로그 그래프생성 모듈, MongoDB 모듈, Hadoop기반 분석 모듈, MySQL 모듈로 구성되어져 있다. 로그 수집기 모듈은 각 은행에서 고객의 업무 프로세스 시작부터 종료 시점까지 발생하는 로그데이터가 클라우드 서버로 전송될 때 로그데이터 종류에 따라 데이터를 수집하고 분류하여 MongoDB 모듈과 MySQL 모듈로 분배하는 기능을 수행한다. 로그 그래프생성 모듈은 수집된 로그데이터를 분석시점, 분석종류에 따라 MongoDB 모듈, Hadoop기반 분석 모듈, MySQL 모듈에 의해서 분석되어진 결과를 사용자에게 웹 인터페이스 형태로 제공하는 역할을 한다. 실시간적 로그데이터분석이 필요한 로그데이터는 MySQL 모듈로 저장이 되어 로그 그래프생성 모듈을 통하여 실시간 로그데이터 정보를 제공한다. 실시간 분석이 아닌 단위시간당 누적된 로그데이터의 경우 MongoDB 모듈에 저장이 되고, 다양한 분석사항에 따라 사용자에게 그래프화해서 제공된다. MongoDB 모듈에 누적된 로그데이터는 Hadoop기반 분석모듈을 통해서 병렬 분산 처리 작업이 수행된다. 성능 평가를 위하여 로그데이터 삽입, 쿼리 성능에 대해서 MySQL만을 적용한 로그데이터 처리시스템과 제안한 시스템을 비교 평가하였으며 그 성능의 우수성을 검증하였다. 또한, MongoDB의 청크 크기별 로그데이터 삽입 성능평가를 통해 최적화된 청크 크기를 확인하였다.

파워보트 협업 생산을 위한 웹기반 컨텐츠 관리 시스템 설계 (Design of a Web-Based System for Collaborative Power-Boat Manufacturing)

  • 이필립;이동건;백명기;오대균;최양열
    • 대한기계학회논문집A
    • /
    • 제36권3호
    • /
    • pp.265-273
    • /
    • 2012
  • 세계적 금융 위기로 인한 기업의 사업 환경이 빠르게 변화하고 있다. 기업이 빠르게 변화하는 환경에 적응하는 점은 과거보다 더욱 중요해 졌으며 이를 위해 세계적 제조 기업들은 기초 생산 인프라 와 고도의 IT 기술의 융합을 통해 위기 극복을 시도하고 있다. 특히 제조업의 제조 경쟁력을 증대 시킬 수 있는 제조 프로세스의 통합, 제품 개발과정에서의 협업, 공급자와 생산자의 유기적인 정보통합을 지원하는 시스템의 중요성이 부각되고 있다. 협업 및 정보통합에 대한 요구가 증대되고 있는 상황에서 본 논문에서는 파워보트 협업생산 및 정보통합을 지원할 수 있는 웹기반 시스템을 설계 및 구현을 수행하였다. 기 시스템은 설계 및 생산과정에서 협업을 지원하기 위해 파워보트의 제품구조 분석, 설계 및 생산 프로세스 분석 등을 통해 설계되었으며 제품정보 및 전사 컨텐츠 관리를 지원한다. 이를 통해 파워요트 개발 프로젝트에 참여하는 다수 기업 설계 및 생산 정보의 통합관리 및 동시 작업을 통한 생산성 증대가 기대된다.

온라인게임 개발전략에 관한 탐색적 연구 : 게임 커뮤니티 활용을 중심으로 (An Exploratory Study for Identifying Key Factors in Online Games Development Strategy Utilizing Web Community)

  • 정재진;장정무;김태웅
    • 정보처리학회논문지D
    • /
    • 제11D권4호
    • /
    • pp.991-1002
    • /
    • 2004
  • 온라인게임 비즈니스는 가장 수익성이 높은 오락산업으로 등장하였고 2004년 현재 국내에서만 26백만명 이상의 게이머들이 온라인게임을 즐기고 있다. 이러한 온라인게임인구의 급격한 증가는 광대역 인터넷서비스망의 보급으로 온라인게임 플레이환경이 확충되고 전국 도처에 PC방이 보급됨에 따른 것으로 온라인게임은 이제 주류 오락문화로 자리매김이 되고 있다. 또한 점차 다양한 연령층에서 온라인게임을 즐기에 됨에 따라 특정 연령층을 타겟으로하는 다앙한 게임들이 개발되고 있다. 게임시장이 지속적으로 성장하고있고 많은 새로운 온라인퍼블리셔들이 시장에 진입하고는 있지만 온라인게임의 성공적 개발을 위해 어떤 요소들이 전략적으로 중요한지에 대해서는 상대적으로 거의 알려져 있지 않은 실정이다. 본 연구에서는 온라인게임의 성공적 개발에 영향을 주는 요인을 식별하기 위하여 연구모형을 제공하고 이를 구조방정식모형을 이용하여 심증분석을 수행하였다. 연구모형에서는 온라인게임의 성공수준에 직ㆍ간접적으로 영향을 미치는 영향요인으로 커뮤니티활동, 다양한 아이디어탐색, 체계적 개발전략, 신축적 개발프로세스, 데모버전의 활용, 아웃소싱 등을 고려하였다. 설문을 통해 수집된 데이터를 이용하여 연구모델의 타당성을 테스트하고 변수들간의 인과관계를 검증한 결과 흥미로운 결론을 도출할 수 있었다. 분석결과 온라인게임커뮤니티의 활용과 체계적 개발 전략의 수립이 성공적인 온라인게임개발의 핵심요인인 것으로 밝혀졌고 게임개발시 체계적인 개발프로세스를 구축ㆍ운영하는 것이 중요하다는 사실을 확인할 수 있었다. 본 연구의 결과는 성공적 온라인게임 컨텐츠 개발을 위한 가이드라인으로 유용하게 쓰여지고, 핵심성공요인에 대한 이해를 통하여 게임개발 및 마케팅 전략계획을 체계적으로 구축할 수 있도록 지원해 줄 수 있을 것으로 기대된다.

전문가 제품 후기가 소비자 제품 평가에 미치는 영향: 텍스트마이닝 분석을 중심으로 (The Effect of Expert Reviews on Consumer Product Evaluations: A Text Mining Approach)

  • 강태영;박도형
    • 지능정보연구
    • /
    • 제22권1호
    • /
    • pp.63-82
    • /
    • 2016
  • 최근 정보기술의 발달로 인해 소비자들은 온라인상에서 많은 정보를 쉽고 빠르게 획득할 수 있다. 소비자가 제품 구매시에는 소비자들이나 전문가들이 작성한 제품 후기 정보를 주로 탐색한다. 기존의 연구들이 소비자들이 창출한 제품 후기 중심으로 주로 진행되어 왔기 때문에, 전문가 제품 후기의 영향력에 대해서는 상대적으로 소수의 연구들만 존재하고 있다. 본 연구는 전문가가 생성하는 제품 후기에 초점을 맞추어, 방대한 실제 비정형데이터인 전문가의 후기를 어떻게 언어학적인 차원과 심리학적인 차원으로 나눌 수 있는지의 방법론을 제안하며, 실제 전문가 제품 후기를 사용하여 의미 있는 다섯 가지 차원의 새로운 변수들을 도출하였다. 그 결과 소비자들이 전문가 후기에서 반응하고 있는 언어적 특성은 제품에 대한 깊이 있는 정보의 양이나 충분한 설명을 나타내는 변수인 Review Depth, 그리고 전문가가 기술하는 방식이 제품에 대한 확신이 없는 듯한 말투를 나타내는 변수인 Lack of Assurance는 소비자의 전반적인 제품평가에 유의한 상관관계가 있는 것으로 밝혀졌다. 또한, 제품에 대한 칭찬이나 긍정적인 면을 서술하는 방식인 Positive Polarity가 소비자의 제품 평가에 영향을 미치지 않았지만, 전문가가 하는 제품에 대한 비관적인 평가인 Negative Polarity는 소비자들의 평가와 유의한 음의 상관관계가 있었다는 점이다. 전문가가 스토리텔링 관점에서 자주 사용하는 Social Orientation 특성은 유의한 관계를 미치지 못함이 밝혀졌다. 본 연구는 새로운 방법론을 제안하고 이를 실제로 활용한 결과를 보여준다는 차원에서 이론적이고 실무적인 공헌을 가진다.

사회연결망분석과 인공신경망을 이용한 추천시스템 성능 예측 (Predicting the Performance of Recommender Systems through Social Network Analysis and Artificial Neural Network)

  • 조윤호;김인환
    • 지능정보연구
    • /
    • 제16권4호
    • /
    • pp.159-172
    • /
    • 2010
  • 협업필터링 추천은 다양한 분야에서 활용되고 있지만 트랜잭션 데이터의 성격에 따라 추천 성능에 현저한 차이를 보이고 있다. 기존 연구에서는 이러한 추천 성능의 차이가 나타나는 이유에 대한 설명을 구체적으로 제시하지 못하고 있고 이에 따라 추천 성능의 예측 또한 연구된 바가 없다. 본 연구는 사회네트워크분석과 인공신경망 모형을 이용하여 협업필터링 추천시스템의 성능을 예측하고자 한다. 본 연구의 목적을 달성하기 위해 국내 백화점의 트랜잭션 데이터를 기반으로 형성되는 고객간 사회 네트워크의 구조적 지표를 측정한 후 이를 기반으로 인공신경망 모형을 구축하고 검증한다. 본 연구는 협업필터링 추천 성능을 예측할 수 있는 새로운 모형을 제시하였다는 점에서 그 의의가 있으며 이를 통해 기업들의 협업필터링 추천시스템 도입에 대한 의사결정에 도움을 줄 수 있을 것으로 기대된다.

인구통계특성 기반 디지털 마케팅을 위한 클릭스트림 빅데이터 마이닝 (Clickstream Big Data Mining for Demographics based Digital Marketing)

  • 박지애;조윤호
    • 지능정보연구
    • /
    • 제22권3호
    • /
    • pp.143-163
    • /
    • 2016
  • 인구통계학적 정보는 디지털 마케팅의 핵심이라 할 수 있는 인터넷 사용자에 대한 타겟 마케팅 및 개인화된 광고를 위해 고려되는 가장 기초적이고 중요한 정보이다. 하지만 인터넷 사용자의 온라인 활동은 익명으로 행해지는 경우가 많기 때문에 인구통계특성 정보를 수집하는 것은 쉬운 일이 아니다. 정기적인 설문 조사를 통해 사용자들의 인구통계특성 정보를 수집할 수도 있지만 많은 비용이 들며 허위 기재 등과 같은 위험성이 존재한다. 특히, 모바일 환경에서는 대부분의 사용자들이 익명으로 활동하기 때문에 인구통계특성 정보를 수집하는 것은 더욱 더 어려워지고 있다. 반면, 인터넷 사용자의 온라인 활동을 기록한 클릭스트림 데이터는 해당 사용자의 인구통계학적 정보에 활용될 수 있다. 특히, 인터넷 사용자의 온라인 행위 특성 중 하나인 페이지뷰는 인구통계학적 정보 예측에 있어서 중요한 요인이 된다. 본 연구에서는 기존 선행 연구를 토대로 클릭스트림 데이터 분석을 통해 인터넷 사용자의 온라인 행위 특성을 추출하고 이를 해당 사용자의 인구통계학적 정보 예측에 사용한다. 또한, 1)의사결정나무를 이용한 변수 축소, 2)주성분분석을 활용한 차원축소, 3)군집분석을 활용한 변수축소의 방법을 제안하고 실험에 적용함으로써 많은 설명변수를 이용하여 예측 모델 생성 시 발생하는 차원의 저주와 과적합 문제를 해결하고 예측 모델의 정확도를 높이고자 하였다. 실험 결과, 범주의 수가 많은 다분형 종속변수에 대한 예측 모델은 모든 설명변수를 사용하여 예측 모델을 생성했을 때보다 본 연구에서 제안한 방법론들을 적용했을 때 예측 모델에 대한 정확도가 향상됨을 알 수 있었다. 본 연구는 클릭스트림 분석을 통해 추출된 인터넷 사용자의 온라인 행위는 해당 사용자의 인구통계학적 정보 예측에 활용 가능하며, 예측된 익명의 인터넷 사용자들에 대한 인구통계학적 정보를 디지털 마케팅에 활용 할 수 있다는데 의의가 있다. 또한, 제안 방법론들을 통해 어느 종속변수에 대해 어떤 방법론들이 예측 모델의 정확도를 개선하는지 확인하였다. 이는 추후 클릭스트림 분석을 활용하여 인구통계학적 정보를 예측할 때, 본 연구에서 제안한 방법론을 사용하여 보다 높은 정확도를 가지는 예측 모델을 생성 할 수 있다는데 의의가 있다.

트윗 데이터를 활용한 IT 트렌드 분석 (An Analysis of IT Trends Using Tweet Data)

  • 이진백;이충권;차경진
    • 지능정보연구
    • /
    • 제21권1호
    • /
    • pp.143-159
    • /
    • 2015
  • 불확실한 환경변화에 대처하고 장기적 전략수립을 위해 기업에게 있어서 IT 트렌드에 대한 예측은 오랫동안 중요한 주제였다. IT 트렌드에 대한 예측을 기반으로 새로운 시대에 대한 인식을 하고 예산을 배정하여 빠르게 변화하는 기술의 추세에 대비할 수 있기 때문이다. 해마다 유수의 컨설팅업체들과 조사기관에서 차년도 IT 트렌드에 대해서 발표되고는 있지만, 이러한 예측이 실제로 차년도 비즈니스 현실세계에서 나타났는지에 대한 연구는 거의 없었다. 본 연구는 현존하는 빅데이터 기술을 활용하여 서울지역을 중심으로 지난 8개월동안(2013년 5월1일부터 2013년12월31까지) 정보통신산업진흥원과 한국정보화진흥원에서 2012년 말에 발표한 IT 트렌드 토픽이 언급된 21,589개의 트윗 데이터를 수집하여 분석하였다. 또한 2013년에 나라장터에 올라온 프로젝트들이 IT트렌드 토픽과 관련이 있는지 상관관계분석을 실시하였다. 연구결과, 빅데이터, 클라우드, HTML5, 스마트홈, 테블릿PC, UI/UX와 같은 IT토픽은 시간이 지날수록 매우 빈번하게 언급되어졌으며, 이 같은 토픽들은 2013년 나라장터 공고 프로젝트 데이터와도 매우 유의한 상관관계를 가지고 있는 것을 확인할 수 있었다. 이는 전년도(2012년)에 예측한 트렌드들이 차년도(2013년)에 실제로 트위터와 한국정부의 공공조달사업에 반영되어 나타나고 있는 것을 의미한다. 본 연구는 최신 빅데이터툴을 사용하여, 유수기관의 IT트렌드 예측이 실제로 트위터와 같은 소셜미디에서 생성되는 트윗데이터에서 얼마나 언급되어 나타나는지 추적했다는 점에서 중요한 의의가 있고, 이를 통해 트위터가 사회적 트랜드의 변화를 효율적으로 추적하기에 유용한 도구임을 확인하고자 할 수 있었다.

TV 시청률과 마이크로블로그 내용어와의 시간대별 관계 분석 (Analysis of the Time-dependent Relation between TV Ratings and the Content of Microblogs)

  • 최준연;백혜득;최진호
    • 지능정보연구
    • /
    • 제20권1호
    • /
    • pp.163-176
    • /
    • 2014
  • 소셜미디어 확산으로 많은 사용자들이 SNS를 통해 자신의 생각과 의견을 표출하며 다른 사용자들과 상호작용하고 있다. 특히 트위터와 같은 마이크로블로그는 짧은 문장을 통해 영화, TV, 사회 현상 등과 같은 공통의 주제에 대해 많은 사람이 즉각적으로 의견을 표출하고 교환하는 플랫폼의 역할을 수행하고 있다. TV방송 프로그램에 대해서도 의견과 감정을 마이크로블로그를 통해 표출하고 있는데, 본 연구에서는 마이크로블로그의 내용과 시청률과의 관계를 살펴보기 위해, 지난 공중파 방송 프로그램에 대한 트윗을 수집하고 부적절한 트윗들을 제거한 후 형태소 분석을 수행하였다. 추출된 형태소뿐 아니라 이모티콘, 신조어 등 사용자가 입력한 모든 단어들을 후보 자질로 삼아 시청률과의 상관관계를 분석하였다. 실험을 위해 2013년 1월부터 10개월간의 예능프로그램 트윗의 데이터를 수집하여 전국 시청률 데이터와 비교 분석을 수행하였다. 트윗의 발생량은 일주일 중 방송된 요일에 가장 많았으며, 특히 방송시간 부근에서 급격히 증가하는 모습을 보였다. 이것은 전국에 동시간에 방송되는 공중파 프로그램의 특성상 공통된 관심 주제를 제공하기 때문에 나타나는 현상으로 여겨진다. 횟수 기반 자질로 방송 일의 총 트윗 수와 리트윗 수, 방송시간 중의 트윗 수와 리트윗 수와 시청률과의 상관 관계를 분석하였으나 모두 낮은 상관 계수를 나타냈다. 이것은 단순한 트윗 발생 빈도는 방송 프로그램의 만족도 또는 시청률을 제대로 반영하고 있지 못함을 의미한다. 내용 기반 자질로 추출한 단어들 중에는 높은 상관관계를 보여주는 단어들이 발견되었으며, 표준어가 아닌 이모티콘과 신조어 중에도 높은 상관관계를 보여주는 자질이 나타났다. 또한 방송시작 전과 후에 따라 상관계수가 높은 단어가 상이함을 발견하였다. 매주 같은 시간에 방송되는 TV 프로그램의 특성상, 방송을 기다리고 기대하는 내용의 트윗과 방송 후 소감을 표현하는 트윗의 내용에 차이가 존재하였다. 이러한 분석결과는 단어에 따라 시청률과 연관성이 높은 시간대가 달라짐을 의미하며, 시청률을 측정하고자 할 때 각 단어들의 시간대를 고려해서 사용해야 함을 의미한다. 본 연구에서 제안한 방법은 기존의 표본 추출을 통해 이루어지는 TV 시청률 측정을 보완할 수 있는 방법에 활용할 수 있으리라 기대된다.