• Title/Summary/Keyword: Web text mining

Search Result 188, Processing Time 0.033 seconds

Rating Individual Food Items of Restaurant Menu based on Online Customer Reviews using Text Mining Technique (신뢰성있는 온라인 고객 리뷰 텍스트 마이닝 기반 식당 개별 음식 아이템 평가)

  • Syed, Muzamil Hussain;Chung, Sun-Tae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.389-392
    • /
    • 2020
  • The growth in social media, blogs and restaurant listing directories have led to increasing customer reviews about restaurants, their quality of food items and services available on the internet. These user reviews offer a massive amount of valuable information that can be used for various decision-making purposes. Currently, most food recommendation sites provide recommendation scores about restaurants rather than food items of the restaurant and the provided recommendation scores may be biased since they are calculated only from user reviews listed only in their sites. Usually, people wants a reliable recommendation about foods, not restaurant. In this paper, we present a reliable Korean food items rating method; we first extract food items by applying NER technique to restaurant reviews collected from many Korean restaurant recommendation web sites, blogs and web data. Then, we apply lexicon-based sentiment analysis on collected user reviews and predict people's opinions as sentiment polarity scores (+1 for positive; -1 for negative; 0 for neutral). Finally, by taking average of all calculated polarity scores about a food item, we obtain a rating to individual menu items of the restaurant. The proposed food item rating is more reliable since it does not depend on reviews of only one site.

Performance Comparison of Naive Bayesian Learning and Centroid-Based Classification for e-Mail Classification (전자메일 분류를 위한 나이브 베이지안 학습과 중심점 기반 분류의 성능 비교)

  • Kim, Kuk-Pyo;Kwon, Young-S.
    • IE interfaces
    • /
    • v.18 no.1
    • /
    • pp.10-21
    • /
    • 2005
  • With the increasing proliferation of World Wide Web, electronic mail systems have become very widely used communication tools. Researches on e-mail classification have been very important in that e-mail classification system is a major engine for e-mail response management systems which mine unstructured e-mail messages and automatically categorize them. In this research we compare the performance of Naive Bayesian learning and Centroid-Based Classification using the different data set of an on-line shopping mall and a credit card company. We analyze which method performs better under which conditions. We compared classification accuracy of them which depends on structure and size of train set and increasing numbers of class. The experimental results indicate that Naive Bayesian learning performs better, while Centroid-Based Classification is more robust in terms of classification accuracy.

Web based Text-mining and Biological Network Analysis System (웹기반 문헌분석 및 생물학적 네트워크 분석시스템 개발)

  • Seo, Dongmin;Cho, Sung-Hoon;Ahn, Kwang-Sung;Yu, Seok Jong;Park, Dong-Il
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2017.05a
    • /
    • pp.27-28
    • /
    • 2017
  • 다양한 위상학적 관계(topological relation)를 분석하는 네트워크 분석은 복잡한 데이터에서 숨어있는 특성과 사실을 발견하는 기술로 최근 빅데이터 분야에서 데이터 분석 핵심 기술로 급부상하고 있다. 본 연구에서는 질병연구에 핵심적인 생물학적 네트워크의 생성 및 사용자 친화적인 네트워크 분석시스템을 개발하였다. 개발한 시스템은 PubMed에서 특정 질병과 관련있는 논문 요약 정보를 자동 수집후 텍스트마이닝을 통해 질병 관련 화합물, 유전자 그리고 상호작용 정보를 추출해 생물학적 네트워크를 생성하는 기능을 제공한다. 또한, 연구자가 손쉽게 생성된 네트워크에 대한 검색 및 다차원 분석을 수행할 수 있는 기능을 제공한다. 마지막으로 개발한 시스템의 우수성을 입증하기 위해 크론병(Crohn's Disease)에 대한 적용사례를 소개한다.

  • PDF

R&D Redundancy and Similarity Check System (클라우드 기반 R&D 연구 보고서 문서표절 및 유사도 검출 시스템)

  • Shin, Hyojoung;Park, Kiheung;Haing, Huhduck
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.01a
    • /
    • pp.31-32
    • /
    • 2016
  • 최근 정부의 R&D 연구에 대한 지원 규모 증가로 인해 전국가적으로 활발하게 기술 연구가 진행되고 있지만 예산을 집행하는 과정에서 기술 연구개발 과제의 중복연구로 시간과 예산을 낭비하는 사례를 노출하고 있다. 이와 같은 문제점을 해결하기 위해서는 정부 R&D 과제 선정과정에서 연구주제의 중복성 방지 등 근원적 혁신이 필요하다. 본 논문에서는 텍스트 마이닝 기술 및 빅데이터 분석 기술(하둡, 아마존 웹 서비스)과 같은 데이터 분석 기술이 도입된 클라우드 기반 R&D 연구 보고서 문서표절 및 유사도를 검출하는 시스템을 제안한다. 본 시스템은 SaaS 형태의 "on-demand software"로 웹 접속만으로 사용이 가능하다.

  • PDF

Research Trends Analysis of Machine Learning and Deep Learning: Focused on the Topic Modeling (머신러닝 및 딥러닝 연구동향 분석: 토픽모델링을 중심으로)

  • Kim, Chang-Sik;Kim, Namgyu;Kwahk, Kee-Young
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.2
    • /
    • pp.19-28
    • /
    • 2019
  • The purpose of this study is to examine the trends on machine learning and deep learning research in the published journals from the Web of Science Database. To achieve the study purpose, we used the abstracts of 20,664 articles published between 1990 and 2017, which include the word 'machine learning', 'deep learning', and 'artificial neural network' in their titles. Twenty major research topics were identified from topic modeling analysis and they were inclusive of classification accuracy, machine learning, optimization problem, time series model, temperature flow, engine variable, neuron layer, spectrum sample, image feature, strength property, extreme machine learning, control system, energy power, cancer patient, descriptor compound, fault diagnosis, soil map, concentration removal, protein gene, and job problem. The analysis of the time-series linear regression showed that all identified topics in machine learning research were 'hot' ones.

Trend Analysis of Korean Economy in the Economic Literature by text mining techniques (텍스트 마이닝 기법을 활용한 한국의 경제연구 동향 분석)

  • Song, Hye-Ji;Park, Kyoung-Soo;Jung, Hye-Eun;Song, Min
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2013.08a
    • /
    • pp.47-50
    • /
    • 2013
  • 빅데이터를 활용한 데이터 분석 기법 중 비정형 데이터 분석의 하나인 텍스트 마이닝 기법을 활용하여, 외국 학술지에 나타난 한국의 경제 분야 트렌드를 분석한다. 데이터베이스로 Web of Knowledge의 연구논문을 활용하였으며, 키워드 분석, 네트워크 분석, 토픽모델링 분석을 통해 연구 동향 및 지적구조를 파악하는 데 그 목적이 있다.

  • PDF

Academic Conference Categorization According to Subjects Using Topical Information Extraction from Conference Websites (학회 웹사이트의 토픽 정보추출을 이용한 주제에 따른 학회 자동분류 기법)

  • Lee, Sue Kyoung;Kim, Kwanho
    • The Journal of Society for e-Business Studies
    • /
    • v.22 no.2
    • /
    • pp.61-77
    • /
    • 2017
  • Recently, the number of academic conference information on the Internet has rapidly increased, the automatic classification of academic conference information according to research subjects enables researchers to find the related academic conference efficiently. Information provided by most conference listing services is limited to title, date, location, and website URL. However, among these features, the only feature containing topical words is title, which causes information insufficiency problem. Therefore, we propose methods that aim to resolve information insufficiency problem by utilizing web contents. Specifically, the proposed methods the extract main contents from a HTML document collected by using a website URL. Based on the similarity between the title of a conference and its main contents, the topical keywords are selected to enforce the important keywords among the main contents. The experiment results conducted by using a real-world dataset showed that the use of additional information extracted from the conference websites is successful in improving the conference classification performances. We plan to further improve the accuracy of conference classification by considering the structure of websites.

A Technique for Extracting GeoSemantic Knowledge from Micro-blog (마이크로 블로그기반의 공간 지식 추출 기법연구)

  • Ha, Su-Wook;Nam, Kwang-Woo;Ryu, Keun-Ho
    • Spatial Information Research
    • /
    • v.20 no.2
    • /
    • pp.129-136
    • /
    • 2012
  • Recently international organizations such as ISO/TC211, OGC, INSPIRE (Infrastructure for Spatial Information in Europe) make an effort to share geospatial data using semantic web technologies. In addition, smart phone and social networking services enable community-based opportunities for participants to share issues of a social phenomenon based on geographic area, and many researchers try to find a method of extracting issues from that. However, serviceable spatial ontologies are still insufficient at application level, and studies of spatial information extraction from SNS were focused on user's location finding or geocoding by text mining. Therefore, a study of extracting spatial phenomenon from social media information and converting it into geosemantic knowledge is very usable. In this paper, we propose a framework for extracting keywords from micro-blog, one of the social media services, finding their relationships using data mining technique, and converting it into spatiotemopral knowledge. The result of this study could be used for implementing a related system as a procedure and ontology model for constructing geoseem antic issue. And from this, it is expected to improve the effectiveness of finding, publishing and analysing spatial issues.

A Study on the Factors of Well-aging through Big Data Analysis : Focusing on Newspaper Articles (빅데이터 분석을 활용한 웰에이징 요인에 관한 연구 : 신문기사를 중심으로)

  • Lee, Chong Hyung;Kang, Kyung Hee;Kim, Yong Ha;Lim, Hyo Nam;Ku, Jin Hee;Kim, Kwang Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.354-360
    • /
    • 2021
  • People hope to live a healthy and happy life achieving satisfaction by striking a good work-life balance. Therefore, there is a growing interest in well-aging which means living happily to a healthy old age without worry. This study identified important factors related to well-aging by analyzing news articles published in Korea. Using Python-based web crawling, 1,199 articles were collected on the news service of portal site Daum till November 2020, and 374 articles were selected which matched the subject of the study. The frequency analysis results of text mining showed keywords such as 'elderly', 'health', 'skin', 'well-aging', 'product', 'person', 'aging', 'female', 'domestic' and 'retirement' as important keywords. Besides, a social network analysis with 45 important keywords revealed strong connections in the order of 'skin-wrinkle', 'skin-aging' and 'old-health'. The result of the CONCOR analysis showed that 45 main keywords were composed of eight clusters of 'life and happiness', 'disease and death', 'nutrition and exercise', 'healing', 'health', and 'elderly services'.

An Efficient Estimation of Place Brand Image Power Based on Text Mining Technology (텍스트마이닝 기반의 효율적인 장소 브랜드 이미지 강도 측정 방법)

  • Choi, Sukjae;Jeon, Jongshik;Subrata, Biswas;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.113-129
    • /
    • 2015
  • Location branding is a very important income making activity, by giving special meanings to a specific location while producing identity and communal value which are based around the understanding of a place's location branding concept methodology. Many other areas, such as marketing, architecture, and city construction, exert an influence creating an impressive brand image. A place brand which shows great recognition to both native people of S. Korea and foreigners creates significant economic effects. There has been research on creating a strategically and detailed place brand image, and the representative research has been carried out by Anholt who surveyed two million people from 50 different countries. However, the investigation, including survey research, required a great deal of effort from the workforce and required significant expense. As a result, there is a need to make more affordable, objective and effective research methods. The purpose of this paper is to find a way to measure the intensity of the image of the brand objective and at a low cost through text mining purposes. The proposed method extracts the keyword and the factors constructing the location brand image from the related web documents. In this way, we can measure the brand image intensity of the specific location. The performance of the proposed methodology was verified through comparison with Anholt's 50 city image consistency index ranking around the world. Four methods are applied to the test. First, RNADOM method artificially ranks the cities included in the experiment. HUMAN method firstly makes a questionnaire and selects 9 volunteers who are well acquainted with brand management and at the same time cities to evaluate. Then they are requested to rank the cities and compared with the Anholt's evaluation results. TM method applies the proposed method to evaluate the cities with all evaluation criteria. TM-LEARN, which is the extended method of TM, selects significant evaluation items from the items in every criterion. Then the method evaluates the cities with all selected evaluation criteria. RMSE is used to as a metric to compare the evaluation results. Experimental results suggested by this paper's methodology are as follows: Firstly, compared to the evaluation method that targets ordinary people, this method appeared to be more accurate. Secondly, compared to the traditional survey method, the time and the cost are much less because in this research we used automated means. Thirdly, this proposed methodology is very timely because it can be evaluated from time to time. Fourthly, compared to Anholt's method which evaluated only for an already specified city, this proposed methodology is applicable to any location. Finally, this proposed methodology has a relatively high objectivity because our research was conducted based on open source data. As a result, our city image evaluation text mining approach has found validity in terms of accuracy, cost-effectiveness, timeliness, scalability, and reliability. The proposed method provides managers with clear guidelines regarding brand management in public and private sectors. As public sectors such as local officers, the proposed method could be used to formulate strategies and enhance the image of their places in an efficient manner. Rather than conducting heavy questionnaires, the local officers could monitor the current place image very shortly a priori, than may make decisions to go over the formal place image test only if the evaluation results from the proposed method are not ordinary no matter what the results indicate opportunity or threat to the place. Moreover, with co-using the morphological analysis, extracting meaningful facets of place brand from text, sentiment analysis and more with the proposed method, marketing strategy planners or civil engineering professionals may obtain deeper and more abundant insights for better place rand images. In the future, a prototype system will be implemented to show the feasibility of the idea proposed in this paper.