• 제목/요약/키워드: Web documents

검색결과 831건 처리시간 0.023초

Using the METHONTOLOGY Approach to a Graduation Screen Ontology Development: An Experiential Investigation of the METHONTOLOGY Framework

  • Park, Jin-Soo;Sung, Ki-Moon;Moon, Se-Won
    • Asia pacific journal of information systems
    • /
    • 제20권2호
    • /
    • pp.125-155
    • /
    • 2010
  • Ontologies have been adopted in various business and scientific communities as a key component of the Semantic Web. Despite the increasing importance of ontologies, ontology developers still perceive construction tasks as a challenge. A clearly defined and well-structured methodology can reduce the time required to develop an ontology and increase the probability of success of a project. However, no reliable knowledge-engineering methodology for ontology development currently exists; every methodology has been tailored toward the development of a particular ontology. In this study, we developed a Graduation Screen Ontology (GSO). The graduation screen domain was chosen for the several reasons. First, the graduation screen process is a complicated task requiring a complex reasoning process. Second, GSO may be reused for other universities because the graduation screen process is similar for most universities. Finally, GSO can be built within a given period because the size of the selected domain is reasonable. No standard ontology development methodology exists; thus, one of the existing ontology development methodologies had to be chosen. The most important considerations for selecting the ontology development methodology of GSO included whether it can be applied to a new domain; whether it covers a broader set of development tasks; and whether it gives sufficient explanation of each development task. We evaluated various ontology development methodologies based on the evaluation framework proposed by G$\acute{o}$mez-P$\acute{e}$rez et al. We concluded that METHONTOLOGY was the most applicable to the building of GSO for this study. METHONTOLOGY was derived from the experience of developing Chemical Ontology at the Polytechnic University of Madrid by Fern$\acute{a}$ndez-L$\acute{o}$pez et al. and is regarded as the most mature ontology development methodology. METHONTOLOGY describes a very detailed approach for building an ontology under a centralized development environment at the conceptual level. This methodology consists of three broad processes, with each process containing specific sub-processes: management (scheduling, control, and quality assurance); development (specification, conceptualization, formalization, implementation, and maintenance); and support process (knowledge acquisition, evaluation, documentation, configuration management, and integration). An ontology development language and ontology development tool for GSO construction also had to be selected. We adopted OWL-DL as the ontology development language. OWL was selected because of its computational quality of consistency in checking and classification, which is crucial in developing coherent and useful ontological models for very complex domains. In addition, Protege-OWL was chosen for an ontology development tool because it is supported by METHONTOLOGY and is widely used because of its platform-independent characteristics. Based on the GSO development experience of the researchers, some issues relating to the METHONTOLOGY, OWL-DL, and Prot$\acute{e}$g$\acute{e}$-OWL were identified. We focused on presenting drawbacks of METHONTOLOGY and discussing how each weakness could be addressed. First, METHONTOLOGY insists that domain experts who do not have ontology construction experience can easily build ontologies. However, it is still difficult for these domain experts to develop a sophisticated ontology, especially if they have insufficient background knowledge related to the ontology. Second, METHONTOLOGY does not include a development stage called the "feasibility study." This pre-development stage helps developers ensure not only that a planned ontology is necessary and sufficiently valuable to begin an ontology building project, but also to determine whether the project will be successful. Third, METHONTOLOGY excludes an explanation on the use and integration of existing ontologies. If an additional stage for considering reuse is introduced, developers might share benefits of reuse. Fourth, METHONTOLOGY fails to address the importance of collaboration. This methodology needs to explain the allocation of specific tasks to different developer groups, and how to combine these tasks once specific given jobs are completed. Fifth, METHONTOLOGY fails to suggest the methods and techniques applied in the conceptualization stage sufficiently. Introducing methods of concept extraction from multiple informal sources or methods of identifying relations may enhance the quality of ontologies. Sixth, METHONTOLOGY does not provide an evaluation process to confirm whether WebODE perfectly transforms a conceptual ontology into a formal ontology. It also does not guarantee whether the outcomes of the conceptualization stage are completely reflected in the implementation stage. Seventh, METHONTOLOGY needs to add criteria for user evaluation of the actual use of the constructed ontology under user environments. Eighth, although METHONTOLOGY allows continual knowledge acquisition while working on the ontology development process, consistent updates can be difficult for developers. Ninth, METHONTOLOGY demands that developers complete various documents during the conceptualization stage; thus, it can be considered a heavy methodology. Adopting an agile methodology will result in reinforcing active communication among developers and reducing the burden of documentation completion. Finally, this study concludes with contributions and practical implications. No previous research has addressed issues related to METHONTOLOGY from empirical experiences; this study is an initial attempt. In addition, several lessons learned from the development experience are discussed. This study also affords some insights for ontology methodology researchers who want to design a more advanced ontology development methodology.

토픽 모델링을 이용한 트위터 이슈 트래킹 시스템 (Twitter Issue Tracking System by Topic Modeling Techniques)

  • 배정환;한남기;송민
    • 지능정보연구
    • /
    • 제20권2호
    • /
    • pp.109-122
    • /
    • 2014
  • 현재 우리는 소셜 네트워크 서비스(Social Network Service, 이하 SNS) 상에서 수많은 데이터를 만들어 내고 있다. 특히, 모바일 기기와 SNS의 결합은 과거와는 비교할 수 없는 대량의 데이터를 생성하면서 사회적으로도 큰 영향을 미치고 있다. 이렇게 방대한 SNS 데이터 안에서 사람들이 많이 이야기하는 이슈를 찾아낼 수 있다면 이 정보는 사회 전반에 걸쳐 새로운 가치 창출을 위한 중요한 원천으로 활용될 수 있다. 본 연구는 이러한 SNS 빅데이터 분석에 대한 요구에 부응하기 위해, 트위터 데이터를 활용하여 트위터 상에서 어떤 이슈가 있었는지 추출하고 이를 웹 상에서 시각화 하는 트위터이슈 트래킹 시스템 TITS(Twitter Issue Tracking System)를 설계하고 구축 하였다. TITS는 1) 일별 순위에 따른 토픽 키워드 집합 제공 2) 토픽의 한달 간 일별 시계열 그래프 시각화 3) 토픽으로서의 중요도를 점수와 빈도수에 따라 Treemap으로 제공 4) 키워드 검색을 통한 키워드의 한달 간 일별 시계열 그래프 시각화의 기능을 갖는다. 본 연구는 SNS 상에서 실시간으로 발생하는 빅데이터를 Open Source인 Hadoop과 MongoDB를 활용하여 분석하였고, 이는 빅데이터의 실시간 처리가 점점 중요해지고 있는 현재 매우 주요한 방법론을 제시한다. 둘째, 문헌정보학 분야뿐만 아니라 다양한 연구 영역에서 사용하고 있는 토픽 모델링 기법을 실제 트위터 데이터에 적용하여 스토리텔링과 시계열 분석 측면에서 유용성을 확인할 수 있었다. 셋째, 연구 실험을 바탕으로 시각화와 웹 시스템 구축을 통해 실제 사용 가능한 시스템으로 구현하였다. 이를 통해 소셜미디어에서 생성되는 사회적 트렌드를 마이닝하여 데이터 분석을 통한 의미 있는 정보를 제공하는 실제적인 방법을 제시할 수 있었다는 점에서 주요한 의의를 갖는다. 본 연구는 JSON(JavaScript Object Notation) 파일 포맷의 1억 5천만개 가량의 2013년 3월 한국어 트위터 데이터를 실험 대상으로 한다.

사회문제 해결형 기술수요 발굴을 위한 키워드 추출 시스템 제안 (A Proposal of a Keyword Extraction System for Detecting Social Issues)

  • 정다미;김재석;김기남;허종욱;온병원;강미정
    • 지능정보연구
    • /
    • 제19권3호
    • /
    • pp.1-23
    • /
    • 2013
  • 융합 R&D가 추구해야 할 바람직한 방향은 이종 기술 간의 결합에 의한 맹목적인 신기술 창출이 아니라, 당면한 주요 문제를 해결함으로써 사회적 니즈를 충족시킬 수 있는 기술을 개발하는 것이다. 이와 같은 사회문제 해결형 기술 R&D를 촉진하기 위해서는 우선 우리 사회에서 주요 쟁점이 되고 있는 문제들을 선별해야 한다. 그런데 우선적이고 중요한 사회문제를 분별하기 위해 전문가 설문조사나 여론조사 등 기존의 사회과학 방법론을 사용하는 것은 참여자의 선입견이 개입될 수 있고 비용이 많이 소요된다는 한계를 지닌다. 기존의 사회과학 방법론이 지닌 문제점을 보완하기 위하여 본 논문에서는 사회적 이슈를 다루고 있는 대용량의 뉴스기사를 수집하고 통계적인 기법을 통하여 사회문제를 나타내는 키워드를 추출하는 시스템의 개발을 제안한다. 2009년부터 최근까지 3년 동안 10개 주요 언론사에서 생산한 약 백 30만 건의 뉴스기사에서 사회문제를 다루는 기사를 식별하고, 한글 형태소 분석, 확률기반의 토픽 모델링을 통해 사회문제 키워드를 추출한다. 또한 키워드만으로는 정확한 사회문제를 파악하기 쉽지 않기 때문에 사회문제와 연관된 키워드와 문장을 찾아서 연결하는 매칭 알고리즘을 제안하다. 마지막으로 사회문제 키워드 비주얼라이제이션 시스템을 통해 시계열에 따른 사회문제 키워드를 일목요연하게 보여줌으로써 사회문제를 쉽게 파악할 수 있도록 하였다. 특히 본 논문에서는 생성확률모델 기반의 새로운 매칭 알고리즘을 제안한다. 대용량 뉴스기사로부터 Latent Dirichlet Allocation(LDA)와 같은 토픽 모델 방법론을 사용하여 자동으로 토픽 클러스터 세트를 추출할 수 있다. 각 토픽 클러스터는 연관성 있는 단어들과 확률값으로 구성된다. 그리고 도메인 전문가는 토픽 클러스터를 분석하여, 각 토픽 클러스터의 레이블을 결정하게 된다. 이를 테면, 토픽 1 = {(실업, 0.4), (해고, 0.3), (회사, 0.3)}에서 토픽 단어들은 실업문제와 관련있으며, 도메인 전문가는 토픽 1을 실업문제로 레이블링 하게 되고, 이러한 토픽 레이블은 사회문제 키워드로 정의한다. 그러나 이와 같이 자동으로 생성된 사회문제 키워드를 분석하여 현재 우리 사회에서 어떤 문제가 발생하고 있고, 시급히 해결해야 될 문제가 무엇인지를 파악하기란 쉽지 않다. 따라서 제안된 매칭 알고리즘을 사용하여 사회문제 키워드를 요약(summarization)하는 방법론을 제시한다. 우선, 각 뉴스기사를 문단(paragraph) 단위로 세그먼트 하여 뉴스기사 대신에 문단 세트(A set of paragraphs)를 가지게 된다. 매칭 알고리즘은 각 토픽 클러스터에 대한 각 문단의 확률값을 측정하게된다. 이때 토픽 클러스터의 단어들과 확률값을 이용하여 토픽과 문단이 얼마나 연관성이 있는지를 계산하게 된다. 이러한 과정을 통해 각 토픽은 가장 연관성이 있는 문단들을 매칭할 수 있게 된다. 이러한 매칭 프로세스를 통해 사회문제 키워드와 연관된 문단들을 검토함으로써 실제 우리 사회에서 해당 사회문제 키워드와 관련해서 구체적으로 어떤 사건과 이슈가 발생하는 지를 쉽게 파악할 수 있게 된다. 또한 매칭 프로세스와 더불어 사회문제 키워드 가시화를 통해 사회문제 수요를 파악하려는 전문가들은 웹 브라우저를 통해 편리하게 특정 시간에 발생한 사회문제가 무엇이며, 구체적인 내용은 무엇인지를 파악할 수 있으며, 시간 순서에 따른 사회이슈의 변동 추이와 그 원인을 알 수 있게 된다. 개발된 시스템을 통해 최근 3년 동안 국내에서 발생했던 다양한 사회문제들을 파악하였고 개발된 알고리즘에 대한 평가를 수행하였다(본 논문에서 제안한 프로토타입 시스템은 http://dslab.snu.ac.kr/demo.html에서 이용 가능함. 단, 구글크롬, IE8.0 이상 웹 브라우저 사용 권장).

3차원 객체기반 모델을 이용한 설계도면 및 시방서관리 시스템 구축 (Development of Drawing & Specification Management System Using 3D Object-based Product Model)

  • 김현남;왕일국;진상윤
    • 한국건설관리학회논문집
    • /
    • 제1권3호
    • /
    • pp.124-134
    • /
    • 2000
  • 건설 프로젝트 수행에서 설계정보는 실제 건축물에 대한 정확한 정보가 반영된 체계적인 모델로 구축하여 프로젝트 전 단계에서 적용할 수 있어야 한다. 하지만 3차원 기반의 도면과 관련 문서에 대한 파일 관리 위주의 시스템은 발주자 및 설계자의 의도를 명확하게 표현하고 전달하기 어려울 뿐만 아니라 단순기능위주, 방대자료의 정리 부족, 축적된 정보와 실행정보의 공유 및 교환이 미비한 수준이다. 반면, 제반 환경의 변화와 기술의 발전 속도는 관련 사용자들이 적응하기 어려울 정도로 급변하고 있다. CAD 기술의 발전은 기존의 2차원 도면 위주에서 3차원 모델기능의 확대와 발전으로 많은 설계정보를 CAD를 통해 표현하고 기타 관련정보와 연계할 수 있는 CAD시스템들이 등장하고 있다. 그러나 아직까지 현시점에서 설계관련 모든 정보를 3차원 모델을 통해 나타내는 것은 매우 어려우며 많은 시간과 비용을 필요로 하고 있다. 따라서 본 연구에서는 기존 3차원 도면 및 시방서 위주의 시스템에서 3차원 모델기반의 설계정보관리 시스템으로의 전환기 시점에 초점을 두고 3차원 모델기반 시스템으로의 완전한 전환이 아닌 3차원과 3차원 기반 시스템의 공존을 통한 전환에 그 초점을 두고 있다. 다시 말해 2차원 도면과 3차원 모델의 통합을 통한 혼합된 형태의 2차원 및 3차원 설계정보관리시스템의 모델을 제시하고자 하며, 이를 통해 객체기반 설계 및 시방서 정보 통합관리시스템을 개발하는 것이 본 연구의 목적이다. 본 연구에서는 3차원 도면 및 시방서 정보를 통합하여 3차원 객체 기반의 설계정보로 표현하기 어려운 부분을 보완하고, 3차원 정보를 효과적으로 활용할 수 있도록 관련 업무를 분석하고, 관리 모델을 구축하여, 이를 기반으로 한 설계도면 및 시방서 통합관리 시스템을 구축하였다.

  • PDF

텍스트마이닝 기반의 효율적인 장소 브랜드 이미지 강도 측정 방법 (An Efficient Estimation of Place Brand Image Power Based on Text Mining Technology)

  • 최석재;전종식;비스워스 수브르더;권오병
    • 지능정보연구
    • /
    • 제21권2호
    • /
    • pp.113-129
    • /
    • 2015
  • 장소 브랜딩은 특정 장소에 대한 의미 부여를 통해 장소성의 정체성 및 공동가치를 생성하며 가치 창출을 하는데 중요한 활동이며, 장소 브랜드에 대한 이미지 파악을 통해 이루어진다. 이에 마케팅, 건축학, 도시건설학 등 여러 분야에서는 인상적인 장소 브랜드의 이미지를 구축하기 위하여 많은 노력을 기울이고 있다. 하지만 설문조사를 포함한 대면조사 방법은 대부분 주관적인 작업이며 측정에 많은 인력 또는 고도의 전문 인력이 소요되어 고비용을 발생시키므로 보다 객관적이면서도 비용효과적인 브랜드 이미지 조사 방법이 필요하다. 이에 본 논문은 텍스트마이닝을 통하여 장소 브랜드의 이미지 강도를 객관적이고 저비용으로 얻는 방법을 찾는 것을 목적으로 한다. 제안하는 방법은 장소 브랜드 이미지를 구성하고 있는 요인과 그 키워드들을 관련 웹문서에서 추출하며, 추출된 정보를 통해 특정 장소의 브랜드 이미지 강도를 측정하는 방법이다. 성능은 안홀트 방법에서 평가에 사용하는 전세계 50개 도시 이미지 인덱스 순위와의 일치도로 검증하였다. 성능 비교를 위해 임의로 순위를 매기는 방법, 안홀트의 설문방식대로 일반인이 평가하는 방법, 본 논문의 방법을 사용하되 안홀트의 방법으로 학습한 것으로 유의한 것으로 추정되는 평가 항목만을 반영하는 방법과 비교하였다. 그 결과 제안된 방법론은 정확성, 비용효율성, 적시성, 확장성, 그리고 신뢰성 측면에서 우수함을 보일 수 있었다. 따라서 본 연구에서 제안한 방법론은 안홀트 방식에 상호 보완적으로 사용될 수 있을 것이다. 향후에는 장소 브랜드 이미지를 형성하는 속성 별로 등장횟수를 계산 한 후에 장소 브랜드에 대한 태도, 연상, 그리고 브랜드 자산과의 인과관계를 자동으로 파악할 수 있는 부분까지 구현하고 실증적 실험을 할 예정이다.

이질성 학습을 통한 문서 분류의 정확성 향상 기법 (Improving the Accuracy of Document Classification by Learning Heterogeneity)

  • 윌리엄;현윤진;김남규
    • 지능정보연구
    • /
    • 제24권3호
    • /
    • pp.21-44
    • /
    • 2018
  • 최근 인터넷 기술의 발전과 함께 스마트 기기가 대중화됨에 따라 방대한 양의 텍스트 데이터가 쏟아져 나오고 있으며, 이러한 텍스트 데이터는 뉴스, 블로그, 소셜미디어 등 다양한 미디어 매체를 통해 생산 및 유통되고 있다. 이처럼 손쉽게 방대한 양의 정보를 획득할 수 있게 됨에 따라 보다 효율적으로 문서를 관리하기 위한 문서 분류의 필요성이 급증하였다. 문서 분류는 텍스트 문서를 둘 이상의 카테고리 혹은 클래스로 정의하여 분류하는 것을 의미하며, K-근접 이웃(K-Nearest Neighbor), 나이브 베이지안 알고리즘(Naïve Bayes Algorithm), SVM(Support Vector Machine), 의사결정나무(Decision Tree), 인공신경망(Artificial Neural Network) 등 다양한 기술들이 문서 분류에 활용되고 있다. 특히, 문서 분류는 문맥에 사용된 단어 및 문서 분류를 위해 추출된 형질에 따라 분류 모델의 성능이 달라질 뿐만 아니라, 문서 분류기 구축에 사용된 학습데이터의 질에 따라 문서 분류의 성능이 크게 좌우된다. 하지만 현실세계에서 사용되는 대부분의 데이터는 많은 노이즈(Noise)를 포함하고 있으며, 이러한 데이터의 학습을 통해 생성된 분류 모형은 노이즈의 정도에 따라 정확도 측면의 성능이 영향을 받게 된다. 이에 본 연구에서는 노이즈를 인위적으로 삽입하여 문서 분류기의 견고성을 강화하고 이를 통해 분류의 정확도를 향상시킬 수 있는 방안을 제안하고자 한다. 즉, 분류의 대상이 되는 원 문서와 전혀 다른 특징을 갖는 이질적인 데이터소스로부터 추출한 형질을 원 문서에 일종의 노이즈의 형태로 삽입하여 이질성 학습을 수행하고, 도출된 분류 규칙 중 문서 분류기의 정확도 향상에 기여하는 분류 규칙만을 추출하여 적용하는 방식의 규칙 선별 기반의 앙상블 준지도학습을 제안함으로써 문서 분류의 성능을 향상시키고자 한다.

지자체 사이버 공간 안전을 위한 금융사기 탐지 텍스트 마이닝 방법 (Financial Fraud Detection using Text Mining Analysis against Municipal Cybercriminality)

  • 최석재;이중원;권오병
    • 지능정보연구
    • /
    • 제23권3호
    • /
    • pp.119-138
    • /
    • 2017
  • 최근 SNS는 개인의 의사소통뿐 아니라 마케팅의 중요한 채널로도 자리매김하고 있다. 그러나 사이버 범죄 역시 정보와 통신 기술의 발달에 따라 진화하여 불법 광고가 SNS에 다량으로 배포되고 있다. 그 결과 개인정보를 빼앗기거나 금전적인 손해가 빈번하게 일어난다. 본 연구에서는 SNS로 전달되는 홍보글인 비정형 데이터를 분석하여 어떤 글이 금융사기(예: 불법 대부업 및 불법 방문판매)와 관련된 글인지를 분석하는 방법론을 제안하였다. 불법 홍보글 학습 데이터를 만드는 과정과, 데이터의 특성을 고려하여 입력 데이터를 구성하는 방안, 그리고 판별 알고리즘의 선택과 추출할 정보 대상의 선정 등이 프레임워크의 주요 구성 요소이다. 본 연구의 방법은 실제로 모 지방자치단체의 금융사기 방지 프로그램의 파일럿 테스트에 활용되었으며, 실제 데이터를 가지고 분석한 결과 금융사기 글을 판정하는 정확도가 사람들에 의하여 판정하는 것이나 키워드 추출법(Term Frequency), MLE 등에 비하여 월등함을 검증하였다.

여행자의 온라인여행사(OTA) 선택속성과 재방문 시 선택속성에 관한 비교연구 (A Comparative Study on Travelers' Online Travel Agency(OTA) selection attributes and revisit selection attributes)

  • 양찬열
    • 경영과정보연구
    • /
    • 제37권4호
    • /
    • pp.175-193
    • /
    • 2018
  • 본 연구는 온라인 여행사(OTA) 이용 여행자들의 최초 선택 시 중요하게 고려하는 요인과 재방문 시에는 온라인 여행사 선택요인이 중요도에서 어떻게 차이가 있는지 살펴보고, 이용 만족도에 영향을 끼치는 선택요인을 분석하였으며 온라인 여행사(OTA)를 이용한 경험이 있거나 이용하고자 하는 여행자들의 온라인 여행사 선택에 영향을 끼치는 요인과 어떤 요인을 중요하게 생각하는지, 재방문 시에는 중요도에서 어떤 차이를 보이는지 살펴보고자 한다. 연구결과, 온라인여행사 최초 이용자와 재방문자 간의 재방문 시 선택속성 차이에 관한 검증 결과 "적극적인 컴플레인 해결태도, 변경 및 취소의 편리성, 티켓과 서류의 배송서비스, 컴플레인 제기 편리성, 서비스 보상제도, 최신정보의 갱신 신속성, 예약절차의 간편함, 과거 만족시켜 주었던 정도, 직원의 업무처리능력, 다양한 결제수단과 결제의 안전성, 오프라인 여행사와의 연계성"과 같은 서비스 환경 구축과 강화에 중점을 두어야 함을 시사하고 있었다. 또한 최초 방문시 선택속성별 온라인 여행사에 대한 만족도 분석 결과 선택요인이 만족도에 영향을 미치고 있으며, 그 중 컴플레인 제기 편리성, 잘아는 직원의 유무, 적극적인 컴플레인 해결태도와 같은 A/S 환경요인이 만족도에 공헌하는 것으로 나타났다. 불편민원 대응에 대한 적극적인 고객 서비스의식(Customer Satisfaction Mind)과 이용의 편리성 등 체계적인 서비스 구조를 원하고 있으며, 이는 온라인 여행사의 생존과 발전을 위한 필요한 마케팅 전략이라는 점을 시사하고 재방문 시 선택속성별 온라인여행사에 대한 만족도의 경우 최초 방문자를 표적시장으로 한 마케팅 집중전략이 유효하며, 이는 온라인여행사의 생존을 위한 필수 마케팅 추진전략의 일환(一環)이라는 점을 시사하고 있다.

주가지수 방향성 예측을 위한 주제지향 감성사전 구축 방안 (Predicting the Direction of the Stock Index by Using a Domain-Specific Sentiment Dictionary)

  • 유은지;김유신;김남규;정승렬
    • 지능정보연구
    • /
    • 제19권1호
    • /
    • pp.95-110
    • /
    • 2013
  • 최근 다양한 소셜미디어를 통해 생성되는 비정형 데이터의 양은 빠른 속도로 증가하고 있으며, 이를 저장, 가공, 분석하기 위한 도구의 개발도 이에 맞추어 활발하게 이루어지고 있다. 이러한 환경에서 다양한 분석도구를 통해 텍스트 데이터를 분석함으로써, 기존의 정형 데이터 분석을 통해 해결하지 못했던 이슈들을 해결하기 위한 많은 시도가 이루어지고 있다. 특히 트위터나 페이스북을 통해 실시간에 근접하게 생산되는 글들과 수많은 인터넷 사이트에 게시되는 다양한 주제의 글들은, 방대한 양의 텍스트 분석을 통해 많은 사람들의 의견을 추출하고 이를 통해 향후 수익 창출에 기여할 수 있는 새로운 통찰을 발굴하기 위한 움직임에 동기를 부여하고 있다. 뉴스 데이터에 대한 오피니언 마이닝을 통해 주가지수 등락 예측 모델을 제안한 최근의 연구는 이러한 시도의 대표적 예라고 할 수 있다. 우리가 여러 매체를 통해 매일 접하는 뉴스 역시 대표적인 비정형 데이터 중의 하나이다. 이러한 비정형 텍스트 데이터를 분석하는 오피니언 마이닝 또는 감성 분석은 제품, 서비스, 조직, 이슈, 그리고 이들의 여러 속성에 대한 사람들의 의견, 감성, 평가, 태도, 감정 등을 분석하는 일련의 과정을 의미한다. 이러한 오피니언 마이닝을 다루는 많은 연구는, 각 어휘별로 긍정/부정의 극성을 규정해 놓은 감성사전을 사용하며, 한 문장 또는 문서에 나타난 어휘들의 극성 분포에 따라 해당 문장 또는 문서의 극성을 산출하는 방식을 채택한다. 하지만 특정 어휘의 극성은 한 가지로 고유하게 정해져 있지 않으며, 분석의 목적에 따라 그 극성이 상이하게 나타날 수도 있다. 본 연구는 특정 어휘의 극성은 한 가지로 고유하게 정해져 있지 않으며, 분석의 목적에 따라 그 극성이 상이하게 나타날 수도 있다는 인식에서 출발한다. 동일한 어휘의 극성이 해석하는 사람의 입장에 따라 또는 분석 목적에 따라 서로 상이하게 해석되는 현상은 지금까지 다루어지지 않은 어려운 이슈로 알려져 있다. 구체적으로는 주가지수의 상승이라는 한정된 주제에 대해 각 관련 어휘가 갖는 극성을 판별하여 주가지수 상승 예측을 위한 감성사전을 구축하고, 이를 기반으로 한 뉴스 분석을 통해 주가지수의 상승을 예측한 결과를 보이고자 한다.

Bi-LSTM 기반의 한국어 감성사전 구축 방안 (KNU Korean Sentiment Lexicon: Bi-LSTM-based Method for Building a Korean Sentiment Lexicon)

  • 박상민;나철원;최민성;이다희;온병원
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.219-240
    • /
    • 2018
  • 감성사전은 감성 어휘에 대한 사전으로 감성 분석(Sentiment Analysis)을 위한 기초 자료로 활용된다. 이와 같은 감성사전을 구성하는 감성 어휘는 특정 도메인에 따라 감성의 종류나 정도가 달라질 수 있다. 예를 들면, '슬프다'라는 감성 어휘는 일반적으로 부정의 의미를 나타내지만 영화 도메인에 적용되었을 경우 부정의 의미를 나타내지 않는다. 그렇기 때문에 정확한 감성 분석을 수행하기 위해서는 특정 도메인에 알맞은 감성사전을 구축하는 것이 중요하다. 최근 특정 도메인에 알맞은 감성사전을 구축하기 위해 범용 감성 사전인 오픈한글, SentiWordNet 등을 활용한 연구가 진행되어 왔으나 오픈한글은 현재 서비스가 종료되어 활용이 불가능하며, SentiWordNet은 번역 간에 한국 감성 어휘들의 특징이 잘 반영되지 않는다는 문제점으로 인해 특정 도메인의 감성사전 구축을 위한 기초 자료로써 제약이 존재한다. 이 논문에서는 기존의 범용 감성사전의 문제점을 해결하기 위해 한국어 기반의 새로운 범용 감성사전을 구축하고 이를 KNU 한국어 감성사전이라 명명한다. KNU 한국어 감성사전은 표준국어대사전의 뜻풀이의 감성을 Bi-LSTM을 활용하여 89.45%의 정확도로 분류하였으며 긍정으로 분류된 뜻풀이에서는 긍정에 대한 감성 어휘를, 부정으로 분류된 뜻풀이에서는 부정에 대한 감성 어휘를 1-gram, 2-gram, 어구 그리고 문형 등 다양한 형태로 추출한다. 또한 다양한 외부 소스(SentiWordNet, SenticNet, 감정동사, 감성사전0603)를 활용하여 감성 어휘를 확장하였으며 온라인 텍스트 데이터에서 사용되는 신조어, 이모티콘에 대한 감성 어휘도 포함하고 있다. 이 논문에서 구축한 KNU 한국어 감성사전은 특정 도메인에 영향을 받지 않는 14,843개의 감성 어휘로 구성되어 있으며 특정 도메인에 대한 감성사전을 효율적이고 빠르게 구축하기 위한 기초 자료로 활용될 수 있다. 또한 딥러닝의 성능을 높이기 위한 입력 자질로써 활용될 수 있으며, 기본적인 감성 분석의 수행이나 기계 학습을 위한 대량의 학습 데이터 세트를 빠르게 구축에 활용될 수 있다.