• 제목/요약/키워드: Web Usage Mining

검색결과 60건 처리시간 0.021초

A Study of Web Usage Mining for eCRM

  • Hyuncheol Kang;Jung, Byoung-Cheol
    • Communications for Statistical Applications and Methods
    • /
    • 제8권3호
    • /
    • pp.831-840
    • /
    • 2001
  • In this study, We introduce the process of web usage mining, which has lately attracted considerable attention with the fast diffusion of world wide web, and explain the web log data, which Is the main subject of web usage mining. Also, we illustrate some real examples of analysis for web log data and look into practical application of web usage mining for eCRM.

  • PDF

Fuzzy Web Usage Mining for User Modeling

  • Jang, Jae-Sung;Jun, Sung-Hae;Oh, Kyung-Whan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권3호
    • /
    • pp.204-209
    • /
    • 2002
  • The interest of data mining in artificial intelligence with fuzzy logic has been increased. Data mining is a process of extracting desirable knowledge and interesting pattern ken large data set. Because of expansion of WWW, web data is more and more huge. Besides mining web contents and web structures, another important task for web mining is web usage mining which mines web log data to discover user access pattern. The goal of web usage mining in this paper is to find interesting user pattern in the web with user feedback. It is very important to find user's characteristic fer e-business environment. In Customer Relationship Management, recommending product and sending e-mail to user by extracted users characteristics are needed. Using our method, we extract user profile from the result of web usage mining. In this research, we concentrate on finding association rules and verify validity of them. The proposed procedure can integrate fuzzy set concept and association rule. Fuzzy association rule uses given server log file and performs several preprocessing tasks. Extracted transaction files are used to find rules by fuzzy web usage mining. To verify the validity of user's feedback, the web log data from our laboratory web server.

User modeling based on fuzzy category and interest for web usage mining

  • Lee, Si-Hun;Lee, Jee-Hyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권1호
    • /
    • pp.88-93
    • /
    • 2005
  • Web usage mining is a research field for searching potentially useful and valuable information from web log file. Web log file is a simple list of pages that users refer. Therefore, it is not easy to analyze user's current interest field from web log file. This paper presents web usage mining method for finding users' current interest based on fuzzy categories. We consider not only how many times a user visits pages but also when he visits. We describe a user's current interest with a fuzzy interest degree to categories. Based on fuzzy categories and fuzzy interest degrees, we also propose a method to cluster users according to their interests for user modeling. For user clustering, we define a category vector space. Experiments show that our method properly reflects the time factor of users' web visiting as well as the users' visit number.

개인별 상품추천시스템, WebCF-PT: 웹마이닝과 상품계층도를 이용한 협업필터링 (A Personalized Recommender System, WebCF-PT: A Collaborative Filtering using Web Mining and Product Taxonomy)

  • 김재경;안도현;조윤호
    • Asia pacific journal of information systems
    • /
    • 제15권1호
    • /
    • pp.63-79
    • /
    • 2005
  • Recommender systems are a personalized information filtering technology to help customers find the products they would like to purchase. Collaborative filtering is known to be the most successful recommendation technology, but its widespread use has exposed some problems such as sparsity and scalability in the e-business environment. In this paper, we propose a recommendation system, WebCF-PT based on Web usage mining and product taxonomy to enhance the recommendation quality and the system performance of traditional CF-based recommender systems. Web usage mining populates the rating database by tracking customers' shopping behaviors on the Web, so leading to better quality recommendations. The product taxonomy is used to improve the performance of searching for nearest neighbors through dimensionality reduction of the rating database. A prototype recommendation system, WebCF-PT is developed and Internet shopping mall, EBIB(e-Business & Intelligence Business) is constructed to test the WebCF-PT system.

웹 사용 마이닝에서의 데이터 수집 전략과 그 응용에 관한 연구 (Research on Data Acquisition Strategy and Its Application in Web Usage Mining)

  • 염종림;정석태
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권3호
    • /
    • pp.231-241
    • /
    • 2019
  • 웹 사용 마이닝 (WUM)은 웹 마이닝과 데이터 마이닝 기술의 응용 중의 하나다. 웹 마이닝 기술은 사용자가 웹 사이트에 액세스 할 때 웹 사용자가 생성 한 웹 서버 로그 데이터를 사용하여 사용자의 액세스 패턴을 식별하고 분석하는데 사용된다. 따라서 우선 데이터 마이닝 기술을 적용하여 웹 로그에서 사용자 액세스 패턴을 발견하기 전에 합리적인 방법으로 데이터를 수집해야 한다. 데이터 수집의 중요한 일은 사용자의 웹 사이트 방문 과정에서 사용자의 자세한 클릭 동작을 효율적으로 얻는 것이다. 이 논문은 주로 데이터 수집 전략 및 필드 추출 알고리즘과 같은 웹 사용 마이닝 데이터 프로세스의 첫 단계 이전의 데이터 수집 단계에 중점을 둔다. 필드 추출 알고리즘은 로그 파일에서 필드를 분리하는 프로세스를 수행하며 대용량의 사용자 데이터에 대한 실제 응용에도 사용된다.

프로세스 마이닝을 이용한 웹 사이트의 이용 패턴 분석 및 그룹 간 비교 분석 (Usage Pattern Analysis and Comparative Analysis among User Groups of Web Sites Using Process Mining Techniques)

  • 김슬기;정재윤
    • 한국빅데이터학회지
    • /
    • 제2권2호
    • /
    • pp.105-114
    • /
    • 2017
  • 오늘날 많은 서비스 지원이 웹 사이트를 통해 제공되고 있다. 웹 사이트의 이용 및 효율성을 최적화하기 위하여 방문자들의 이용 패턴 분석이 매우 중요하다. 본 연구에서는 BPI Challenge 2016에서 제공하는 웹 사이트 접속 로그를 분석하여 이용 패턴 분석 및 이용자 그룹별 비교 분석 연구를 수행하였다. 이 데이터는 네덜란드 고용보험사(UWV)의 IT 시스템의 웹 사이트 접속 로그를 제공하며, 고객의 인적 정보, 해당 기관의 웹 사이트를 사용할 때의 고객 행동을 설명하는 클릭 데이터 등의 대한 정보를 포함하고 있다. 본 연구에서는 프로세스 마이닝 기법을 이용하여 사용 고객의 사용 패턴과 고객 그룹 간 특징을 분석하여, 궁극적으로 웹 서비스를 이용하는 고객들을 대상으로 서비스 품질을 향상시키고자 한다.

  • PDF

Hybrid Internet Business Model using Evolutionary Support Vector Regression and Web Response Survey

  • Jun, Sung-Hae
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.408-411
    • /
    • 2006
  • Currently, the nano economy threatens the mass economy. This is based on the internet business models. In the nano business models based on internet, the diversely personalized services are needed. Many researches of the personalization on the web have been studied. The web usage mining using click stream data is a tool for personalization model. In this paper, we propose an internet business model using evolutionary support vector machine and web response survey as a web usage mining. After analyzing click stream data for web usage mining, a personalized service model is constructed in our work. Also, using an approach of web response survey, we improve the performance of the customers' satisfaction. From the experimental results, we verify the performance of proposed model using two data sets from KDD Cup 2000 and our web server.

  • PDF

A Clustering Algorithm Considering Structural Relationships of Web Contents

  • Kang Hyuncheol;Han Sang-Tae;Sun Young-Su
    • Communications for Statistical Applications and Methods
    • /
    • 제12권1호
    • /
    • pp.191-197
    • /
    • 2005
  • Application of data mining techniques to the world wide web, referred to as web mining, has been the focus of several recent researches. With the explosive growth of information sources available on the world wide web, it has become increasingly necessary to track and analyze their usage patterns. In this study, we introduce a process of pre-processing and cluster analysis on web log data and suggest a distance measure considering the structural relationships between web contents. Also, we illustrate some real examples of cluster analysis for web log data and look into practical application of web usage mining for eCRM.

웹 사용 마이닝을 위한 퍼지 카테고리 기반의 트랜잭션 분석 기법 (Fuzzy category based transaction analysis for web usage mining)

  • 이시헌;이지형
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.341-344
    • /
    • 2004
  • 웹 사용 마이닝(Web usage mining)은 웹 로그 파일(web log file)이나 웹 사용 데이터(Web usage data)에서 의미 있는 정보를 찾아내는 연구 분야이다. 웹 사용 마이닝에서 일반적으로 많이 사용하는 웹 로그 파일은 사용자들이 참조한 페이지의 단순한 리스트들이다. 따라서 단순히 웹 로그 파일만을 이용하는 방법만으로는 사용자가 참조했던 페이지의 내용을 반영하여 분석하는데에는 한계가 있다. 이러한 점을 개선하고자 본 논문에서는 페이지 위주가 아닌 웹 페이지가 포함하고 있는 내용(아이템)을 고려하는 새로운 퍼지 카테고리 기반의 웹 사용 마이닝 기법을 제시한다. 또한 사용자를 잘 파악하기 위해서 시간에 따라 관심의 변화를 파악하는 방법을 제시한다.

  • PDF

웹 사용 정보 마이닝 기반의 동적 사용자 프로파일 생성 (Generator of Dynamic User Profiles Based on Web Usage Mining)

  • 안계순;고세진;정준;이필규
    • 정보처리학회논문지B
    • /
    • 제9B권4호
    • /
    • pp.389-390
    • /
    • 2002
  • 동적 웹 컨텐츠 제공에서 고객을 위한 추천서비스에 이르는 인터넷 기반의 전자상거래 애플리케이션에서는 고객이 어떤 성향을 가지고 있는가에 대한 정보를 획득하는 것이 중요하다. 웹 개인화의 대표적인 기술인 협력적 석과는 사용자의 정보를 정적인 프로파일 형태로 저장하여 사용자의 성향 변화를 빨리 획득할 수 없다. 또한 사용자의 명시적 평가 의존성, 확장성 부족, 다차원 공간 데이터에 대한 적용 어려움 둥의 문제점을 가지고 있다. 이와 같은 단점을 해결하기 위한 해결 방안으로 웹 사용 정보 마이닝(web usage mining)이 쓰이고 있다. 웹 사용 정보 마이닝은 서버에 축적된 웹 사용 데이터(web usage data)를 이용하여 패턴을 발견하는 기술이다. 특히 연관 규칙 생성 알고리즘으로 웹 사용 패턴(web usage pattern)을 찾고 패턴을 클러스터링하는 기술이 사용되고 있다. 그러나 연관 규칙 생성 알고리즘은 많은 수의 패턴들을 찾고 또 유용하지 못한 패턴을 발견하는 단점이 있다. 본 논문에서는 검증된 웹 사용 패턴을 이용한 동적 사용자 프로파일 생성 방법을 제안한다. 먼저 패턴 발견을 위해 연관 규칙 생성 알고리즘인 Apriori를 이용하고 사용자 프로파일을 위한 클러스터를 생성하기 위해 ARHP를 채택하였다. 클러스터를 생성하기 전에 Dempster-Shafer 이론을 이용하여 유용하지 못한 패턴을 제거하는 패턴 검증 과정을 수행한다. 검증된 패턴을 이용하여 클러스터를 생성하고 사용자의 현재 활성화된 세션에 따라 동적으로 사용자 프로파일이 생성된다