• Title/Summary/Keyword: Web Recommendation

Search Result 314, Processing Time 0.027 seconds

Determinants of Wage for Web-based Platform Workers: In perspective of evaluation by previous employers (웹 기반형(Web-based) 플랫폼 노동자의 임금 결정요인: 이전 고용주에 의한 평가의 관점에서)

  • Lim, Jisun
    • Journal of Digital Convergence
    • /
    • v.20 no.4
    • /
    • pp.1-14
    • /
    • 2022
  • The purpose of this study was to find the wage determinants of web-based platform workers. For this purpose, a total of 3,575 web-based platform workers' information from Freelancer.com, a global platform labor market, in September 2018 were used and whether or not newly available indicators such as evaluations by previous employers had a significant effect on the wage increase of platform workers using OLS and QR methods. As an OLS estimation results, the number of reviews, as well as education and experience, affects the wages of platform workers. However, as a result of the QR estimation, experience rather than education, recommendation rather than a review has a more significant effect on the wage of web-based platform workers as the wage level rises.

Web-based Product Recommendation System with Probability Similarity Measure (확률 유사성척도를 활용한 웹 기반의 상품추천시스템)

  • Choi, Sang-Hyun;Ahn, Byeong-Seok
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.1
    • /
    • pp.91-105
    • /
    • 2007
  • This research suggests a recommendation system that enables bidirectional communications between the user and system using a utility range-based product recommendation algorithm in order to provide more dynamic and personalized recommendations. The main idea of the proposed algorithm is to find the utility ranges of products based on user specified preference information and calculate the similarity by using overlapping probability of two range values. Based on the probability, we determine what products are similar to each other among the products in the product list of collaborative companies. We have also developed a Web-based application system to recommend similar products to the customer. Using the system, we carry out the experiments for the performance evaluation of the procedure. The experimental study shows that the utility range-based approach is a viable solution to the similar product recommendation problems from the viewpoint of both accuracy and satisfaction rate.

  • PDF

Personal Information Protection Recommendation System using Deep Learning in POI (POI 에서 딥러닝을 이용한 개인정보 보호 추천 시스템)

  • Peng, Sony;Park, Doo-Soon;Kim, Daeyoung;Yang, Yixuan;Lee, HyeJung;Siet, Sophort
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.377-379
    • /
    • 2022
  • POI refers to the point of Interest in Location-Based Social Networks (LBSNs). With the rapid development of mobile devices, GPS, and the Web (web2.0 and 3.0), LBSNs have attracted many users to share their information, physical location (real-time location), and interesting places. The tremendous demand of the user in LBSNs leads the recommendation systems (RSs) to become more widespread attention. Recommendation systems assist users in discovering interesting local attractions or facilities and help social network service (SNS) providers based on user locations. Therefore, it plays a vital role in LBSNs, namely POI recommendation system. In the machine learning model, most of the training data are stored in the centralized data storage, so information that belongs to the user will store in the centralized storage, and users may face privacy issues. Moreover, sharing the information may have safety concerns because of uploading or sharing their real-time location with others through social network media. According to the privacy concern issue, the paper proposes a recommendation model to prevent user privacy and eliminate traditional RS problems such as cold-start and data sparsity.

An E-Mail Recommendation System using Semi-Automatic Method (반자동 방식을 이용한 이메일 추천 시스템)

  • Jeong, Ok-Ran;Jo, Dong-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.604-607
    • /
    • 2003
  • Most recommendation systems recommend the products or other information satisfying preferences of users on the basis of the users' previous profile information and other information related to product searches and purchase of users visiting web sites. This study aims to apply these application categories to e-mail more necessary to users. The E-Mail System has the strong personality so that there will be some problems even if e-mails are automatically classified by category through the learning on the basis of the personal rules. In consideration with this aspect, we need the semi-automatic system enabling both automatic classification and recommendation method to enhance the satisfaction of users. Accordingly, this paper uses two approaches as the solution against the misclassification that the users consider as the accuracy of classification itself using the dynamic threshold in Bayesian Learning Algorithm and the second one is the methodological approach using the recommendation agent enabling the users to make the final decision.

  • PDF

A Learner Tailoring Question Recommendation System for Web based Learning Evaluation System (웹 기반 학습평가를 위한 학습자 중심 문제추천 시스템)

  • Jeong, Hwa-Young;Kim, Eun-Won;Hong, Bong-Hwa
    • 전자공학회논문지 IE
    • /
    • v.45 no.4
    • /
    • pp.68-73
    • /
    • 2008
  • In this research, we proposed a learner tailoring question recommendation system for web based learning evaluation system. For teaming evaluation process, this system used the item difficulty Each question was stored and managed to the question bank. Item difficulty was recalculated during teaming process and feedback in next course. For learner tailoring question recommendation, learner could choice the teaming part and set the learning difficulty. In application result of proposal method, almost learner could improve learning score by controling teaming difficulty.

Development of Intelligent Internet Shopping Mall Supporting Tool Based on Software Agents and Knowledge Discovery Technology (소프트웨어 에이전트 및 지식탐사기술 기반 지능형 인터넷 쇼핑몰 지원도구의 개발)

  • 김재경;김우주;조윤호;김제란
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.2
    • /
    • pp.153-177
    • /
    • 2001
  • Nowadays, product recommendation is one of the important issues regarding both CRM and Internet shopping mall. Generally, a recommendation system tracks past actions of a group of users to make a recommendation to individual members of the group. The computer-mediated marketing and commerce have grown rapidly and thereby automatic recommendation methodologies have got great attentions. But the researches and commercial tools for product recommendation so far, still have many aspects that merit further considerations. To supplement those aspects, we devise a recommendation methodology by which we can get further recommendation effectiveness when applied to Internet shopping mall. The suggested methodology is based on web log information, product taxonomy, association rule mining, and decision tree learning. To implement this we also design and intelligent Internet shopping mall support system based on agent technology and develop it as a prototype system. We applied this methodology and the prototype system to a leading Korean Internet shopping mall and provide some experimental results. Through the experiment, we found that the suggested methodology can perform recommendation tasks both effectively and efficiently in real world problems. Its systematic validity issues are also discussed.

  • PDF

Development of Story Recommendation through Character Web Drama Cliché Analysis (캐릭터 웹드라마 클리셰 분석을 통한 스토리 추천 개발)

  • Hyun-Su Lee;Jung-Yi Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.17-22
    • /
    • 2023
  • This study analyzed the genres of popular character web dramas and studied the development of story recommendations through the language model GPT. As a result of the study, it was confirmed that similar cliches are repeated in web dramas. In this study, a common story structure (cliché) was analyzed and a typical story structure was standardized and presented so that even unskilled video producers can easily produce character web dramas. For analysis, clichés of web dramas in the school romance genre, which is the most popular genre among teenagers, were listed in order of success. In addition, this study studied the story recommendation mechanism for users by learning the clichés that were analyzed and cataloged in GPT. Through this study, it is expected to accelerate the production of various contents as well as popular popularity through the acceptance of various databases from the standpoint of database consumption theory of web contents.

A Multimedia Contents Recommendation for Mobile Web Users

  • Kang, Mee;Cho, Yoon-Ho;Kim, Jae-Kyeong
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2004.11a
    • /
    • pp.323-330
    • /
    • 2004
  • As mobile market grows more and more fast, the mobile contents market, especially music contents for mobile phones have recorded remarkable growth. In spite of this rapid growth, mobile web users experience high levels of frustration to search the desired music. New musics are very profitable to the content providers, but the existing collaborative filtering (CF) system can't recommend them. To solve these problems, we propose an extended CF system to reflect the user's real preference by representing the characteristics of users and musics in the feature space. We represent the musics using the music contents based acoustic features in multi-dimensional feature space, and then select a neighborhood with the distance based function. Furthermore, this paper suggests a recommendation for procedure for new music by matching new music with other users' preference. The suggested procedure is explained step by step with an illustration example.

  • PDF

Effect of On/off-line Acquaintance's Recommendation Message on Product Attitude and Purchase Intention (온·오프라인 지인의 추천메시지가 제품태도와 구매의도에 미치는 영향)

  • Lee, Jung-Woo;Kim, Mi Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.40 no.6
    • /
    • pp.1010-1024
    • /
    • 2016
  • This study identifies the influence of on/off-line acquaintances' recommendation messages on fashion product attitude and purchase intention on the online purchase of fashion products in two-sided word of mouth situations as well as compares the difference in influence according to bond-base with equidistance. This study was conducted for one month on university students in their 20s who were believed to be active in smartphone use. Out of the collected 174 copies of the questionnaire, 162 copies were used for analysis. The questionnaire was classified into online and offline recommendation messages of an acquaintance. We present two-sided fashion product reviews made similar to the type found in an actual shopping mall web-site. As for analysis, confirmatory factory analysis, structural equation modeling, and multi-group analysis were conducted using AMOS 19.0. The analysis results are as follows. First, on/off-line acquaintances' recommendation messages had significant influences on product attitude in the situation where two-sided reviews on fashion products were presented; however, those messages did not influence purchase intention. Recommendation messages positively increased product attitude and enhanced purchase intention if acquaintances' recommendation messages were mediated between on/off-line acquaintances' recommendation messages and purchase intention. Consequently, a mediating effect on product attitude was revealed. Second, there was no difference between online acquaintances and offline acquaintances in terms of the influence of acquaintances' recommendation messages on product attitude and purchase intention, in the situation where two-sided reviews were presented on online fashion products. Therefore, no control effect according to the type of acquaintance was confirmed.

Recommendation System based on Tag Ontology and Machine Learning (태그 온톨로지와 기계학습을 이용한 추천시스템)

  • Kang, Sin-Jae;Ding, Ying
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.5
    • /
    • pp.133-141
    • /
    • 2008
  • Social Web is turning current Web into social platform for knowing people and sharing information. This paper takes major social tagging systems as examples, namely delicious, flickr and youtube, to analyze the social phenomena in the Social Web in order to identify the way of mediating and linking social data. A simple Tag Ontology (TO) is proposed to integrate different social tagging data and mediate and link with other related social metadata. Through several machine learning for tagging data, tag groups and similar user groups are extracted, and then used to learn the tagging ontology. A recommender system adopting the tag ontology is also suggested as an applying field.

  • PDF