• 제목/요약/키워드: Web Recommendation

검색결과 314건 처리시간 0.022초

심층신경망 기반의 뷰티제품 추천시스템 (Deep Neural Network-Based Beauty Product Recommender)

  • 송희석
    • Journal of Information Technology Applications and Management
    • /
    • 제26권6호
    • /
    • pp.89-101
    • /
    • 2019
  • Many researchers have been focused on designing beauty product recommendation system for a long time because of increased need of customers for personalized and customized recommendation in beauty product domain. In addition, as the application of the deep neural network technique becomes active recently, various collaborative filtering techniques based on the deep neural network have been introduced. In this context, this study proposes a deep neural network model suitable for beauty product recommendation by applying Neural Collaborative Filtering and Generalized Matrix Factorization (NCF + GMF) to beauty product recommendation. This study also provides an implementation of web API system to commercialize the proposed recommendation model. The overall performance of the NCF + GMF model was the best when the beauty product recommendation problem was defined as the estimation rating score problem and the binary classification problem. The NCF + GMF model showed also high performance in the top N recommendation.

Hybrid Product Recommendation for e-Commerce : A Clustering-based CF Algorithm

  • Ahn, Do-Hyun;Kim, Jae-Sik;Kim, Jae-Kyeong;Cho, Yoon-Ho
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2003년도 춘계학술대회
    • /
    • pp.416-425
    • /
    • 2003
  • Recommender systems are a personalized information filtering technology to help customers find the products they would like to purchase. Collaborative filtering (CF) has been known to be the most successful recommendation technology. However its widespread use in e-commerce has exposed two research issues, sparsity and scalability. In this paper, we propose several hybrid recommender procedures based on web usage mining, clustering techniques and collaborative filtering to address these issues. Experimental evaluation of suggested procedures on real e-commerce data shows interesting relation between characteristics of procedures and diverse situations.

  • PDF

빈발 순회패턴 탐사에 기반한 확장된 동적 웹페이지 추천 알고리즘 (An Extended Dynamic Web Page Recommendation Algorithm Based on Mining Frequent Traversal Patterns)

  • 이근수;이창훈;윤선희;이상문;서정민
    • 한국멀티미디어학회논문지
    • /
    • 제8권9호
    • /
    • pp.1163-1176
    • /
    • 2005
  • 웹은 가장 커다란 분산 정보저장소로서 빠른 속도로 성장했으나, 웹의 정보를 읽고 이해하는 데는 본질적으로 한계가 있다. 웹의 이러한 환경에서 사용자의 순회패턴(traversal Patterns)을 탐사하는 것은 시스템 설계나 정보서비스 제공 측면에서 중요한 문제이다. 본 논문에서는 세션에 나타나는 페이지들간의 연관성 정보를 활용하여 빈발 k-페이지집합을 탐사하여 추천 페이지집합을 생성함으로써 효율적인 웹 정보서비스를 제공할 수 있는 Web Page Recommend(WebPR) 알고리즘[11]을 화장한다. 화장된 내용은 WebPRl(A) 알고리즘을 추가하였으며, WebPR(T)에서 윈도우 개념을 도입한 새로운 winWebPR(T) 알고리즘을 제안하고 있다. 두개의 화장된 알고리즘을 포함하여 두개의 실제 웹로그(Weblog) 데이터에 대해 실험 결과에서 알 수 있듯이 윈도우 개념을 도입한 winWebPR(T) 알고리즘이 세션에 나타나는 페이지들간의 모든 연관성 정보를 활용함으로써 가장 우수한 성능을 보였다.

  • PDF

Web Services deployment model based on WSG(Web Services gateway) in NGN

  • 이강찬;이승윤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 춘계종합학술대회 A
    • /
    • pp.909-912
    • /
    • 2008
  • The 'convergence service' in NGN implies the integration of services in NGN with a unified manner to access each service in order to interwork with each service. This Recommendation defines the convergence model for NGN based on Web Services and provides a detailed scenario of each convergence model in form of Web Services.

  • PDF

웹 로그 분석을 이용한 추천 에이전트의 개발 (Development of Recommendation Agents through Web Log Analysis)

  • 김성학;이창훈
    • 한국컴퓨터산업학회논문지
    • /
    • 제4권10호
    • /
    • pp.621-630
    • /
    • 2003
  • 웹 로그는 사용자가 웹 사이트의 데이터를 액세스할 때 웹 서버에 의해 기록되는 정보로써 최근 인터넷 이용의 급속한 증가로 인해 웹 로그의 활용가치가 더욱 중요하게 되었으며, 웹 로그의 분석 결과는 쇱 사용자들의 행위를 나타내는 패턴을 분석하거나 웹 사이트의 구조를 재배치 하는데 이용될 수 있다. 이를 실현하기 위한 많은 연구들은 주로 연관규칙과 순차패턴을 이용하고 있는데, 대다수는 Apriori 알고리즘을 기본으로 하고 있어서 대용량의 데이터베이스에 적용하기에는 컴퓨팅 시간적 측면에서 비효율적이다. 따라서 본 논문에서는 웹 환경에서 흥미있는 패턴을 탐사하는 새로운 알고리즘을 개발하여 보다 빠르게 패턴탐사를 수행하고, 많은 사용자들이 관심있게 순차적으로 접근하고 있는 정보를 시스템 관리자에게 제공할 수 있는 추천에이전트를 개발한다.

  • PDF

온라인 음악 콘텐츠 추천 시스템 구현을 위한 협업 필터링 기법들의 비교 평가 (Evaluation of Collaborative Filtering Methods for Developing Online Music Contents Recommendation System)

  • 유영석;김지연;손방용;정종진
    • 전기학회논문지
    • /
    • 제66권7호
    • /
    • pp.1083-1091
    • /
    • 2017
  • As big data technologies have been developed and massive data have exploded from users through various channels, CEO of global IT enterprise mentioned core importance of data in next generation business. Therefore various machine learning technologies have been necessary to apply data driven services but especially recommendation has been core technique in viewpoint of directly providing summarized information or exact choice of items to users in information flooding environment. Recently evolved recommendation techniques have been proposed by many researchers and most of service companies with big data tried to apply refined recommendation method on their online business. For example, Amazon used item to item collaborative filtering method on its sales distribution platform. In this paper, we develop a commercial web service for suggesting music contents and implement three representative collaborative filtering methods on the service. We also produce recommendation lists with three methods based on real world sample data and evaluate the usefulness of them by comparison among the produced result. This study is meaningful in terms of suggesting the right direction and practicality when companies and developers want to develop web services by applying big data based recommendation techniques in practical environment.

SNS에서 사회연결망 기반 추천과 협업필터링 기반 추천의 비교 (Comparison of Recommendation Using Social Network Analysis with Collaborative Filtering in Social Network Sites)

  • 박상언
    • 한국IT서비스학회지
    • /
    • 제13권2호
    • /
    • pp.173-184
    • /
    • 2014
  • As social network services has become one of the most successful web-based business, recommendation in social network sites that assist people to choose various products and services is also widely adopted. Collaborative Filtering is one of the most widely adopted recommendation approaches, but recommendation technique that use explicit or implicit social network information from social networks has become proposed in recent research works. In this paper, we reviewed and compared research works about recommendation using social network analysis and collaborative filtering in social network sites. As the results of the analysis, we suggested the trends and implications for future research of recommendation in SNSs. It is expected that graph-based analysis on the semantic social network and systematic comparative analysis on the performances of social filtering and collaborative filtering are required.

생성형 인공지능을 활용한 신발 추천 모델 개발 (Development of a Shoe Recommendation Model for Matching Outfits Using Generative Artificial Intelligence)

  • Jun Woo CHOI
    • Journal of Korea Artificial Intelligence Association
    • /
    • 제1권1호
    • /
    • pp.7-10
    • /
    • 2023
  • This study proposes an AI-based shoe recommendation model based on user clothing image data to solve the problem of the global fashion industry, which is worsening due to factors such as the economic downturn. Shoes are an important part of modern fashion, and this research aims to improve user satisfaction and contribute to economic growth through a generative AI-based shoe recommendation service. By utilizing generative AI in the personalized consumer market, we show the feasibility, efficiency, and improvements through an accessible web-based implementation. In conclusion, this study provides insights to help fulfill consumer needs in the ever-changing fashion market by implementing a generative AI-based shoe recommendation model.

클릭스트림 데이터를 활용한 전자상거래에서 상품추천이 고객 행동에 미치는 영향 분석 (Effects of Product Recommendations on Customer Behavior in e-Commerce : An Empirical Analysis of Online Bookstore Clickstream Data)

  • 이홍주
    • 한국경영과학회지
    • /
    • 제33권3호
    • /
    • pp.59-76
    • /
    • 2008
  • Studies of recommender systems have focused on improving their performance in terms of error rates between the actual and predicted preference values. Also, many studies have been conducted to investigate the relationships between customer information processing and the characteristics of recommender systems via surveys and web-based experiments. However, the actual impact of recommendation on product pages for customer browsing behavior and decision-making in the commercial environment has not, to the best of our knowledge, been investigated with actual clickstream data. The principal objective of this research is to assess the effects of product recommendation on customer behavior in e-Commerce, using actual clickstream data. For this purpose, we utilized an online bookstore's clickstream data prior to and after the web site renovation of the store. We compared the recommendation effects on customer behavior with the data. From these comparisons, we determined that the relevant recommendations in product pages have positive relationships with the acquisition of customer attention and elaboration. Additionally, the placing of recommended items in shopping cart is positively related to suggesting the relevant recommendations. However, the frequencies at which the recommended items were purchased did not differ prior to and after the renovation of the site.

클릭스트림 데이터를 활용한 전자상거래에서 상품추천이 고객 행동에 미치는 영향 분석

  • 이홍주
    • 한국경영정보학회:학술대회논문집
    • /
    • 한국경영정보학회 2008년도 춘계학술대회
    • /
    • pp.135-140
    • /
    • 2008
  • Studies of recommender systems have focused on improving their performance in terms of error rates between the actual and predicted preference values. Also, many studies have been conducted to investigate the relationships between customer information processing and the characteristics of recommender systems via surveys and web-based experiments. However, the actual impact of recommendation on product pages for customer browsing behavior and decision-making in the commercial environment has not, to the best of our knowledge, been investigated with actual clickstream data. The principal objective of this research is to assess the effects of product recommendation on customer behavior in e-Commerce, using actual clickstream data. For this purpose, we utilized an online bookstore's clickstream data prior to and after the web site renovation of the store. We compared the recommendation effects on customer behavior with the data. From these comparisons, we determined that the relevant recommendations in product pages have positive relationships with the acquisition of customer attention and elaboration. Additionally, the placing of recommended items in shopping cart is positively related to suggesting the relevant recommendations. However, the frequencies at which the recommended items were purchased did not differ prior to and after the renovation of the site.

  • PDF