• Title/Summary/Keyword: Web Ontologies

Search Result 144, Processing Time 0.021 seconds

WordNet-Based Category Utility Approach for Author Name Disambiguation (저자명 모호성 해결을 위한 개념망 기반 카테고리 유틸리티)

  • Kim, Je-Min;Park, Young-Tack
    • The KIPS Transactions:PartB
    • /
    • v.16B no.3
    • /
    • pp.225-232
    • /
    • 2009
  • Author name disambiguation is essential for improving performance of document indexing, retrieval, and web search. Author name disambiguation resolves the conflict when multiple authors share the same name label. This paper introduces a novel approach which exploits ontologies and WordNet-based category utility for author name disambiguation. Our method utilizes author knowledge in the form of populated ontology that uses various types of properties: titles, abstracts and co-authors of papers and authors' affiliation. Author ontology has been constructed in the artificial intelligence and semantic web areas semi-automatically using OWL API and heuristics. Author name disambiguation determines the correct author from various candidate authors in the populated author ontology. Candidate authors are evaluated using proposed WordNet-based category utility to resolve disambiguation. Category utility is a tradeoff between intra-class similarity and inter-class dissimilarity of author instances, where author instances are described in terms of attribute-value pairs. WordNet-based category utility has been proposed to exploit concept information in WordNet for semantic analysis for disambiguation. Experiments using the WordNet-based category utility increase the number of disambiguation by about 10% compared with that of category utility, and increase the overall amount of accuracy by around 98%.

Experiment and Simulation for Evaluation of Jena Storage Plug-in Considering Hierarchical Structure (계층 구조를 고려한 Jena Plug-in 저장소의 평가를 위한 실험 및 시뮬레이션)

  • Shin, Hee-Young;Jeong, Dong-Won;Baik, Doo-Kwon
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.2
    • /
    • pp.31-47
    • /
    • 2008
  • As OWL(Web Ontology Language) has been selected as a standard ontology description language by W3C, many ontologies have been building and developing in OWL. The lena developed by HP as an Application Programming Interface(API) provides various APIs to develop inference engines as well as storages, and it is widely used for system development. However, the storage model of Jena2 stores most owl documents not acceptable into a single table and it shows low processing performance for a large ontology data set. Most of all, Jena2 storage model does not consider hierarchical structures of classes and properties. In addition, it shows low query processing performance using the hierarchical structure because of many join operations. To solve these issues, this paper proposes an OWL ontology relational database model. The proposed model semantically classifies and stores information such as classes, properties, and instances. It improves the query processing performance by managing hierarchical information in a separate table. This paper also describes the implementation and evaluation results. This paper also shows the experiment and evaluation result and the comparative analysis on both results. The experiment and evaluation show our proposal provides a prominent performance as against Jena2.

  • PDF

A Trustworthiness Improving Link Evaluation Technique for LOD considering the Syntactic Properties of RDFS, OWL, and OWL2 (RDFS, OWL, OWL2의 문법특성을 고려한 신뢰향상적 LOD 연결성 평가 기법)

  • Park, Jaeyeong;Sohn, Yonglak
    • Journal of KIISE:Databases
    • /
    • v.41 no.4
    • /
    • pp.226-241
    • /
    • 2014
  • LOD(Linked Open Data) is composed of RDF triples which are based on ontologies. They are identified, linked, and accessed under the principles of linked data. Publications of LOD data sets lead to the extension of LOD cloud and ultimately progress to the web of data. However, if ontologically the same things in different LOD data sets are identified by different URIs, it is difficult to figure out their sameness and to provide trustworthy links among them. To solve this problem, we suggest a Trustworthiness Improving Link Evaluation, TILE for short, technique. TILE evaluates links in 4 steps. Step 1 is to consider the inference property of syntactic elements in LOD data set and then generate RDF triples which have existed implicitly. In Step 2, TILE appoints predicates, compares their objects in triples, and then evaluates links between the subjects in the triples. In Step 3, TILE evaluates the predicates' syntactic property at the standpoints of subject description and vocabulary definition and compensates the evaluation results of Step 2. The syntactic elements considered by TILE contain RDFS, OWL, OWL2 which are recommended by W3C. Finally, TILE makes the publisher of LOD data set review the evaluation results and then decide whether to re-evaluate or finalize the links. This leads the publishers' responsibility to be reflected in the trustworthiness of links among the data published.

Ontology-Based Process-Oriented Knowledge Map Enabling Referential Navigation between Knowledge (지식 간 상호참조적 네비게이션이 가능한 온톨로지 기반 프로세스 중심 지식지도)

  • Yoo, Kee-Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.61-83
    • /
    • 2012
  • A knowledge map describes the network of related knowledge into the form of a diagram, and therefore underpins the structure of knowledge categorizing and archiving by defining the relationship of the referential navigation between knowledge. The referential navigation between knowledge means the relationship of cross-referencing exhibited when a piece of knowledge is utilized by a user. To understand the contents of the knowledge, a user usually requires additionally information or knowledge related with each other in the relation of cause and effect. This relation can be expanded as the effective connection between knowledge increases, and finally forms the network of knowledge. A network display of knowledge using nodes and links to arrange and to represent the relationship between concepts can provide a more complex knowledge structure than a hierarchical display. Moreover, it can facilitate a user to infer through the links shown on the network. For this reason, building a knowledge map based on the ontology technology has been emphasized to formally as well as objectively describe the knowledge and its relationships. As the necessity to build a knowledge map based on the structure of the ontology has been emphasized, not a few researches have been proposed to fulfill the needs. However, most of those researches to apply the ontology to build the knowledge map just focused on formally expressing knowledge and its relationships with other knowledge to promote the possibility of knowledge reuse. Although many types of knowledge maps based on the structure of the ontology were proposed, no researches have tried to design and implement the referential navigation-enabled knowledge map. This paper addresses a methodology to build the ontology-based knowledge map enabling the referential navigation between knowledge. The ontology-based knowledge map resulted from the proposed methodology can not only express the referential navigation between knowledge but also infer additional relationships among knowledge based on the referential relationships. The most highlighted benefits that can be delivered by applying the ontology technology to the knowledge map include; formal expression about knowledge and its relationships with others, automatic identification of the knowledge network based on the function of self-inference on the referential relationships, and automatic expansion of the knowledge-base designed to categorize and store knowledge according to the network between knowledge. To enable the referential navigation between knowledge included in the knowledge map, and therefore to form the knowledge map in the format of a network, the ontology must describe knowledge according to the relation with the process and task. A process is composed of component tasks, while a task is activated after any required knowledge is inputted. Since the relation of cause and effect between knowledge can be inherently determined by the sequence of tasks, the referential relationship between knowledge can be circuitously implemented if the knowledge is modeled to be one of input or output of each task. To describe the knowledge with respect to related process and task, the Protege-OWL, an editor that enables users to build ontologies for the Semantic Web, is used. An OWL ontology-based knowledge map includes descriptions of classes (process, task, and knowledge), properties (relationships between process and task, task and knowledge), and their instances. Given such an ontology, the OWL formal semantics specifies how to derive its logical consequences, i.e. facts not literally present in the ontology, but entailed by the semantics. Therefore a knowledge network can be automatically formulated based on the defined relationships, and the referential navigation between knowledge is enabled. To verify the validity of the proposed concepts, two real business process-oriented knowledge maps are exemplified: the knowledge map of the process of 'Business Trip Application' and 'Purchase Management'. By applying the 'DL-Query' provided by the Protege-OWL as a plug-in module, the performance of the implemented ontology-based knowledge map has been examined. Two kinds of queries to check whether the knowledge is networked with respect to the referential relations as well as the ontology-based knowledge network can infer further facts that are not literally described were tested. The test results show that not only the referential navigation between knowledge has been correctly realized, but also the additional inference has been accurately performed.