• Title/Summary/Keyword: Web Log Data

Search Result 176, Processing Time 0.019 seconds

A Method for Analyzing Web Log of the Hadoop System for Analyzing a Effective Pattern of Web Users (효과적인 웹 사용자의 패턴 분석을 위한 하둡 시스템의 웹 로그 분석 방안)

  • Lee, Byungju;Kwon, Jungsook;Go, Gicheol;Choi, Yonglak
    • Journal of Information Technology Services
    • /
    • v.13 no.4
    • /
    • pp.231-243
    • /
    • 2014
  • Of the various data that corporations can approach, web log data are important data that correspond to data analysis to implement customer relations management strategies. As the volume of approachable data has increased exponentially due to the Internet and popularization of smart phone, web log data have also increased a lot. As a result, it has become difficult to expand storage to process large amounts of web logs data flexibly and extremely hard to implement a system capable of categorizing, analyzing, and processing web log data accumulated over a long period of time. This study thus set out to apply Hadoop, a distributed processing system that had recently come into the spotlight for its capacity of processing large volumes of data, and propose an efficient analysis plan for large amounts of web log. The study checked the forms of web log by the effective web log collection methods and the web log levels by using Hadoop and proposed analysis techniques and Hadoop organization designs accordingly. The present study resolved the difficulty with processing large amounts of web log data and proposed the activity patterns of users through web log analysis, thus demonstrating its advantages as a new means of marketing.

A Study of Web Usage Mining for eCRM

  • Hyuncheol Kang;Jung, Byoung-Cheol
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.831-840
    • /
    • 2001
  • In this study, We introduce the process of web usage mining, which has lately attracted considerable attention with the fast diffusion of world wide web, and explain the web log data, which Is the main subject of web usage mining. Also, we illustrate some real examples of analysis for web log data and look into practical application of web usage mining for eCRM.

  • PDF

A Framework for Web Log Analysis Using Process Mining Techniques (프로세스 마이닝을 이용한 웹 로그 분석 프레임워크)

  • Ahn, Yunha;Oh, Kyuhyup;Kim, Sang-Kuk;Jung, Jae-Yoon
    • Journal of Information Technology and Architecture
    • /
    • v.11 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • Web mining techniques are often used to discover useful patterns from data log generated by Web servers for the purpose of web usage analysis. Yet traditional Web mining techniques do not reflect sufficiently sequential properties of Web log data. To address such weakness, we introduce a framework for analyzing Web access log data by using process mining techniques. To illustrate the proposed framework, we show the analysis of Web access log in a campus information system based on the framework and discuss the implication of the analysis result.

Consumer behavior prediction using Airbnb web log data (에어비앤비(Airbnb) 웹 로그 데이터를 이용한 고객 행동 예측)

  • An, Hyoin;Choi, Yuri;Oh, Raeeun;Song, Jongwoo
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.3
    • /
    • pp.391-404
    • /
    • 2019
  • Customers' fixed characteristics have often been used to predict customer behavior. It has recently become possible to track customer web logs as customer activities move from offline to online. It has become possible to collect large amounts of web log data; however, the researchers only focused on organizing the log data or describing the technical characteristics. In this study, we predict the decision-making time until each customer makes the first reservation, using Airbnb customer data provided by the Kaggle website. This data set includes basic customer information such as gender, age, and web logs. We use various methodologies to find the optimal model and compare prediction errors for cases with web log data and without it. We consider six models such as Lasso, SVM, Random Forest, and XGBoost to explore the effectiveness of the web log data. As a result, we choose Random Forest as our optimal model with a misclassification rate of about 20%. In addition, we confirm that using web log data in our study doubles the prediction accuracy in predicting customer behavior compared to not using it.

Behavior analysis of entrance applicants using web log data (웹 로그데이터를 이용한 대학입시 지원자 행태 분석)

  • Choi, Seung-Bae;Kang, Chang-Wan;Cho, Jang-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.3
    • /
    • pp.493-504
    • /
    • 2009
  • The web log data analysis is to analysis traces which visitors remain while they drop by a web-site. Ultimately it can help to obtain a lot of useful information that can efficiently manage homepage and perform CRM(customer relationship management) using obtained information. In this paper, we provide a basic information to manage efficiently homepage of D university and to establish strategy for invitation of new pupil, as analyzing web log data for D university.

  • PDF

Web Navigation Mining by Integrating Web Usage Data and Hyperlink Structures (웹 사용 데이타와 하이퍼링크 구조를 통합한 웹 네비게이션 마이닝)

  • Gu Heummo;Choi Joongmin
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.5
    • /
    • pp.416-427
    • /
    • 2005
  • Web navigation mining is a method of discovering Web navigation patterns by analyzing the Web access log data. However, it is admitted that the log data contains noisy information that leads to the incorrect recognition of user navigation path on the Web's hyperlink structure. As a result, previous Web navigation mining systems that exploited solely the log data have not shown good performance in discovering correct Web navigation patterns efficiently, mainly due to the complex pre-processing procedure. To resolve this problem, this paper proposes a technique of amalgamating the Web's hyperlink structure information with the Web access log data to discover navigation patterns correctly and efficiently. Our implemented Web navigation mining system called SPMiner produces a WebTree from the hyperlink structure of a Web site that is used trl eliminate the possible noises in the Web log data caused by the user's abnormal navigational activities. SPMiner remarkably reduces the pre-processing overhead by using the structure of the Web, and as a result, it could analyze the user's search patterns efficiently.

CERES: A Log-based, Interactive Web Analytics System for Backbone Networks (CERES: 백본망 로그 기반 대화형 웹 분석 시스템)

  • Suh, Ilhyun;Chung, Yon Dohn
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.10
    • /
    • pp.651-657
    • /
    • 2015
  • The amount of web traffic has increased as a result of the rapid growth of the use of web-based applications. In order to obtain valuable information from web logs, we need to develop systems that can support interactive, flexible, and efficient ways to analyze and handle large amounts of data. In this paper, we present CERES, a log-based, interactive web analytics system for backbone networks. Since CERES focuses on analyzing web log records generated from backbone networks, it is possible to perform a web analysis from the perspective of a network. CERES is designed for deployment in a server cluster using the Hadoop Distributed File System (HDFS) as the underlying storage. We transform and store web log records from backbone networks into relations and then allow users to use a SQL-like language to analyze web log records in a flexible and interactive manner. In particular, we use the data cube technique to enable the efficient statistical analysis of web log. The system provides users a web-based, multi-modal user interface.

A Development Study of Tool for Web Log Analysis

  • Choi, Seungbae;Kang, Changwan;Kim, Kyukon;Son, Jongkwan
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.1
    • /
    • pp.93-106
    • /
    • 2004
  • Recently, many data of various types is gained with development of computer in many fields. Especially, web log data generating in web site furnish beneficial information on an organization. The enterprise's destiny is swayed by according as how these information gaining from the web site utilize. In this paper, for the purpose of obtaining useful information, we present a tool is called WebBizi for web log analysis. This will be helpful to enterprise working the web site.

Web Server Log Visualization

  • Kim, Jungkee
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.101-107
    • /
    • 2018
  • Visitors to a Web site leave access logs documenting their activity in the site. These access logs provide a valuable source of information about the visitors' access patterns in the Web site. In addition to the pages that the user visited, it is generally possible to discover the geographical locations of the visitors. Web servers also records other information such as the entry into the site, the URL, the used operating system and the browser, etc. There are several Web mining techniques to extract useful information from such information and visualization of a Web log is one of those techniques. This paper presents a technique as well as a case a study of visualizing a Web log.

Designing Summary Tables for Mining Web Log Data

  • Ahn, Jeong-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.1
    • /
    • pp.157-163
    • /
    • 2005
  • In the Web, the data is generally gathered automatically by Web servers and collected in server or access logs. However, as users access larger and larger amounts of data, query response times to extract information inevitably get slower. A method to resolve this issue is the use of summary tables. In this short note, we design a prototype of summary tables that can efficiently extract information from Web log data. We also present the relative performance of the summary tables against a sampling technique and a method that uses raw data.

  • PDF