• Title/Summary/Keyword: Web Grid

Search Result 155, Processing Time 0.027 seconds

Mosaic Detection Based on Edge Projection in Digital Video (비디오 데이터에서 에지 프로젝션 기반의 모자이크 검출)

  • Jang, Seok-Woo;Huh, Moon-Haeng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.339-345
    • /
    • 2016
  • In general, mosaic blocks are used to hide some specified areas, such as human faces and disgusting objects, in an input image when images are uploaded on a web-site or blog. This paper proposes a new algorithm for robustly detecting grid mosaic areas in an image based on the edge projection. The proposed algorithm first extracts the Canny edges from an input image. The algorithm then detects the candidate mosaic blocks based on horizontal and vertical edge projection. Subsequently, the algorithm obtains real mosaic areas from the candidate areas by eliminating the non-mosaic candidate regions through geometric features, such as size and compactness. The experimental results showed that the suggested algorithm detects mosaic areas in images more accurately than other existing methods. The suggested mosaic detection approach is expected to be utilized usefully in a variety of multimedia-related real application areas.

The history of high intensity rainfall estimation methods in New Zealand and the latest High Intensity Rainfall Design System (HIRDS.V3)

  • Horrell, Graeme;Pearson, Charles
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.16-16
    • /
    • 2011
  • Statistics of extreme rainfall play a vital role in engineering practice from the perspective of mitigation and protection of infrastructure and human life from flooding. While flood frequency assessments, based on river flood flow data are preferred, the analysis of rainfall data is often more convenient due to the finer spatial nature of rainfall recording networks, often with longer records, and potentially more easily transferable from site to site. The rainfall frequency analysis as a design tool has developed over the years in New Zealand from Seelye's daily rainfall frequency maps in 1947 to Thompson's web based tool in 2010. This paper will present a history of the development of New Zealand rainfall frequency analysis methods, and the details of the latest method, so that comparisons may in future be made with the development of Korean methods. One of the main findings in the development of methods was new knowledge on the distribution of New Zealand rainfall extremes. The High Intensity Rainfall Design System (HIRDS.V3) method (Thompson, 2011) is based upon a regional rainfall frequency analysis with the following assumptions: $\bullet$ An "index flood" rainfall regional frequency method, using the median annual maximum rainfall as the indexing variable. $\bullet$ A regional dimensionless growth curve based on the Generalised Extreme Value (GEV), and using goodness of fit test for the GEV, Gumbel (EV1), and Generalised Logistic (GLO) distributions. $\bullet$ Mapping of median annual maximum rainfall and parameters of the regional growth curves, using thin-plate smoothing splines, a $2km\times2km$ grid, L moments statistics, 10 durations from 10 minutes to 72 hours, and a maximum Average Recurrence Interval of 100 years.

  • PDF

A Study on the Master Plan of a Religious Community Complexes Applying the Types of the Urban Street Patterns. (도시가로패턴의 유형을 응용한 신앙공동체마을의 배치계획에 관한 연구)

  • Park, Chang Geun
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.7
    • /
    • pp.63-72
    • /
    • 2019
  • The purpose of this study is to apply the types of urban street pattern and the shape of streets to the master plan of a religious community complexes. The street pattern is a framework of urban structure and to understand the urban structure is helpful to understand the nature of urban streets. By analysing the precedent researches, the types of street patterns are classified as a serial pattern, a branching pattern, a grid pattern and a web pattern. The street patterns are hierarchically composed and classified as a differential development and sequential development. There are boundaries and gates where the street space is differentiated to the more private level. The urban streets continue to the architectural streets such as arcades, deck streets, corridors, lobbies and halls. The purposes and results of the master plan of this religious community complexes are as follows. 1) The school area, housing area and service area are properly separated and connected. They are separated by the building masses and connected by the street space in between. 2) The street pattern of this complexes is a serial pattern where the streets are the center of each functional building groups. The entry square is divided by the symbolic building. The one branch is school street and the other is living street. These streets are combined again to the festival street. 3) The architectural streets are organically related to the urban streets. 4) Each street spaces are of adequate form according to its properties as a place. 5) There are boundaries or gates such as a gab between buildings, posts, arches and deck streets according to the relationship between streets.

A Study on the Semantic Modeling of Manufacturing Facilities based on Status Definition and Diagnostic Algorithms (상태 정의 및 진단 알고리즘 기반 제조설비 시멘틱 모델링에 대한 연구)

  • Kwang-Jin, Kwak;Jeong-Min, Park
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.1
    • /
    • pp.163-170
    • /
    • 2023
  • This paper introduces the semantic modeling technology for autonomous control of manufacturing facilities and status definition algorithm. With the development of digital twin technology and various ICT technologies of the smart factory, a new production management model is being built in the manufacturing industry. Based on the advanced smart manufacturing technology, the status determination algorithm was presented as a methodology to quickly identify and respond to problems with autonomous control and facilities in the factory. But the existing status determination algorithm informs the user or administrator of error information through the grid map and is presented as a model for coping with it. However, the advancement and direction of smart manufacturing technology is diversifying into flexible production and production tailored to consumer needs. Accordingly, in this paper, a technology that can design and build a factory using a semantic-based Linked List data structure and provide only necessary information to users or managers through graph-based information is introduced to improve management efficiency. This methodology can be used as a structure suitable for flexible production and small-volume production of various types.

Horizon Run Spin-off Simulations for Studying the Formation and Expansion history of Early Universe

  • Kim, Yonghwi;Park, Jaehong;Park, Changbom;Kim, Juhan;Singh, Ankit;Lee, Jaehyun;Shin, Jihye
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.45.1-45.1
    • /
    • 2021
  • Horizon Run 5 (HR5) is a cosmological hydrodynamical simulation which captures the properties of the Universe on aGpc scale while achieving a resolution of 1kpc. This enormous dynamic range allows us to simultaneously capture the physics of the cosmic web on very large scales and account for the formation and evolution of dwarf galaxies on much smaller scales. On the back of a remarkable achievement of this, we have finished to run follow-up simulations which have 2 times larger volume than before and are expected to complementary to some limitations of previous HR simulations both for the study on the large scale features and the expansion history in a distant Universe. For these simulations, we consider the sub-grid physics of radiative heating/cooling, reionization, star formation, SN/AGN feedbacks, chemical evolution and the growth of super-massive blackholes. In order to do this project, we implemented a hybrid MPI-OpenMP version of the RAMSES code, 'RAMSES-OMP', which is specifically designed for modern many-core many thread parallel systems. These simulation successfully reproduce various observation result and provide a large amount of statistical samples of Lyman-alpha emitters and protoclusters which are important to understand the formation and expansion history of early universe. These are invaluable assets for the interpretation of current ΛCDM cosmology and current/upcoming deep surveys of the Universe, such as the world largest narrow band imaging survey, ODIN (One-hundred-square-degree Dark energy camera Imaging in Narrow band).

  • PDF

Location Service Modeling of Distributed GIS for Replication Geospatial Information Object Management (중복 지리정보 객체 관리를 위한 분산 지리정보 시스템의 위치 서비스 모델링)

  • Jeong, Chang-Won;Lee, Won-Jung;Lee, Jae-Wan;Joo, Su-Chong
    • The KIPS Transactions:PartD
    • /
    • v.13D no.7 s.110
    • /
    • pp.985-996
    • /
    • 2006
  • As the internet technologies develop, the geographic information system environment is changing to the web-based service. Since geospatial information of the existing Web-GIS services were developed independently, there is no interoperability to support diverse map formats. In spite of the same geospatial information object it can be used for various proposes that is duplicated in GIS separately. It needs intelligent strategies for optimal replica selection, which is identification of replication geospatial information objects. And for management of replication objects, OMG, GLOBE and GRID computing suggested related frameworks. But these researches are not thorough going enough in case of geospatial information object. This paper presents a model of location service, which is supported for optimal selection among replication and management of replication objects. It is consist of tree main services. The first is binding service which can save names and properties of object defined by users according to service offers and enable clients to search them on the service of offers. The second is location service which can manage location information with contact records. And obtains performance information by the Load Sharing Facility on system independently with contact address. The third is intelligent selection service which can obtain basic/performance information from the binding service/location service and provide both faster access and better performance characteristics by rules as intelligent model based on rough sets. For the validity of location service model, this research presents the processes of location service execution with Graphic User Interface.

A Design of Integrated Scientific Workflow Execution Environment for A Computational Scientific Application (계산 과학 응용을 위한 과학 워크플로우 통합 수행 환경 설계)

  • Kim, Seo-Young;Yoon, Kyoung-A;Kim, Yoon-Hee
    • Journal of Internet Computing and Services
    • /
    • v.13 no.1
    • /
    • pp.37-44
    • /
    • 2012
  • Numerous scientists who are engaged in compute-intensive researches require more computing facilities than before, while the computing resource and techniques are increasingly becoming more advanced. For this reason, many works for e-Science environment have been actively invested and established around the world, but still the scientists look for an intuitive experimental environment, which is guaranteed the improved environmental facilities without additional configurations or installations. In this paper, we present an integrated scientific workflow execution environment for Scientific applications supporting workflow design with high performance computing infrastructure and accessibility for web browser. This portal supports automated consecutive execution of computation jobs in order of the form defined by workflow design tool and execution service concerning characteristics of each job to batch over distributed grid resources. Workflow editor of the portal presents a high-level frontend and easy-to-use interface with monitoring service, which shows the status of workflow execution in real time so that user can check the intermediate data during experiments. Therefore, the scientists can take advantages of the environment to improve the productivity of study based on HTC.

Development of Information Technology Infrastructures through Construction of Big Data Platform for Road Driving Environment Analysis (도로 주행환경 분석을 위한 빅데이터 플랫폼 구축 정보기술 인프라 개발)

  • Jung, In-taek;Chong, Kyu-soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.669-678
    • /
    • 2018
  • This study developed information technology infrastructures for building a driving environment analysis platform using various big data, such as vehicle sensing data, public data, etc. First, a small platform server with a parallel structure for big data distribution processing was developed with H/W technology. Next, programs for big data collection/storage, processing/analysis, and information visualization were developed with S/W technology. The collection S/W was developed as a collection interface using Kafka, Flume, and Sqoop. The storage S/W was developed to be divided into a Hadoop distributed file system and Cassandra DB according to the utilization of data. Processing S/W was developed for spatial unit matching and time interval interpolation/aggregation of the collected data by applying the grid index method. An analysis S/W was developed as an analytical tool based on the Zeppelin notebook for the application and evaluation of a development algorithm. Finally, Information Visualization S/W was developed as a Web GIS engine program for providing various driving environment information and visualization. As a result of the performance evaluation, the number of executors, the optimal memory capacity, and number of cores for the development server were derived, and the computation performance was superior to that of the other cloud computing.

Elicitation of Collective Intelligence by Fuzzy Relational Methodology (퍼지관계 이론에 의한 집단지성의 도출)

  • Joo, Young-Do
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.17-35
    • /
    • 2011
  • The collective intelligence is a common-based production by the collaboration and competition of many peer individuals. In other words, it is the aggregation of individual intelligence to lead the wisdom of crowd. Recently, the utilization of the collective intelligence has become one of the emerging research areas, since it has been adopted as an important principle of web 2.0 to aim openness, sharing and participation. This paper introduces an approach to seek the collective intelligence by cognition of the relation and interaction among individual participants. It describes a methodology well-suited to evaluate individual intelligence in information retrieval and classification as an application field. The research investigates how to derive and represent such cognitive intelligence from individuals through the application of fuzzy relational theory to personal construct theory and knowledge grid technique. Crucial to this research is to implement formally and process interpretatively the cognitive knowledge of participants who makes the mutual relation and social interaction. What is needed is a technique to analyze cognitive intelligence structure in the form of Hasse diagram, which is an instantiation of this perceptive intelligence of human beings. The search for the collective intelligence requires a theory of similarity to deal with underlying problems; clustering of social subgroups of individuals through identification of individual intelligence and commonality among intelligence and then elicitation of collective intelligence to aggregate the congruence or sharing of all the participants of the entire group. Unlike standard approaches to similarity based on statistical techniques, the method presented employs a theory of fuzzy relational products with the related computational procedures to cover issues of similarity and dissimilarity.

Using Google Earth for a Dynamic Display of Future Climate Change and Its Potential Impacts in the Korean Peninsula (한반도 기후변화의 시각적 표현을 위한 Google Earth 활용)

  • Yoon, Kyung-Dahm;Chung, U-Ran;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.4
    • /
    • pp.275-278
    • /
    • 2006
  • Google Earth enables people to easily find information linked to geographical locations. Google Earth consists of a collection of zoomable satellite images laid over a 3-D Earth model and any geographically referenced information can be uploaded to the Web and then downloaded directly into Google Earth. This can be achieved by encoding in Google's open file format, KML (Keyhole Markup Language), where it is visible as a new layer superimposed on the satellite images. We used KML to create and share fine resolution gridded temperature data projected to 3 climatological normal years between 2011-2100 to visualize the site-specific warming and the resultant earlier blooming of spring flowers over the Korean Peninsula. Gridded temperature and phonology data were initially prepared in ArcGIS GRID format and converted to image files (.png), which can be loaded as new layers on Google Earth. We used a high resolution LCD monitor with a 2,560 by 1,600 resolution driven by a dual link DVI card to facilitate visual effects during the demonstration.