• 제목/요약/키워드: Web 기반 학습 시스템

검색결과 681건 처리시간 0.03초

AI Fire Detection & Notification System

  • Na, You-min;Hyun, Dong-hwan;Park, Do-hyun;Hwang, Se-hyun;Lee, Soo-hong
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권12호
    • /
    • pp.63-71
    • /
    • 2020
  • 본 논문에서는 최근 가장 신뢰도 높은 인공지능 탐지 알고리즘인 YOLOv3와 EfficientDet을 이용한 화재 탐지 기술과 문자, 웹, 앱, 이메일 등 4종류의 알림을 동시에 전송하는 알림서비스 그리고 화재 탐지와 알림서비스를 연동하는 AWS 시스템을 제안한다. 우리의 정확도 높은 화재 탐지 알고리즘은 두 종류인데, 로컬에서 작동하는 YOLOv3 기반의 화재탐지 모델은 2000개 이상의 화재 데이터를 이용해 데이터 증강을 통해 학습하였고, 클라우드에서 작동하는 EfficientDet은 사전학습모델(Pretrained Model)에서 추가로 학습(Transfer Learning)을 진행하였다. 4종류의 알림서비스는 AWS 서비스와 FCM 서비스를 이용해 구축하였는데, 웹, 앱, 메일의 경우 알림 전송 직후 알림이 수신되며, 기지국을 거치는 문자시스템의 경우 지연시간이 1초 이내로 충분히 빨랐다. 화재 영상의 화재 탐지 실험을 통해 우리의 화재 탐지 기술의 정확성을 입증하였으며, 화재 탐지 시간과 알림서비스 시간을 측정해 화재 발생 후 알림 전송까지의 시간도 확인해보았다. 본 논문의 AI 화재 탐지 및 알림서비스 시스템은 과거의 화재탐지 시스템들보다 더 정확하고 빨라서 화재사고 시 골든타임 확보에 큰 도움을 줄 것이라고 기대된다.

회전기계류 상태 실시간 진단을 위한 IoT 기반 클라우드 플랫폼 개발 (Real-time Monitoring System for Rotating Machinery with IoT-based Cloud Platform)

  • 정해동;김수현;우선희;김송현;이승철
    • 대한기계학회논문집A
    • /
    • 제41권6호
    • /
    • pp.517-524
    • /
    • 2017
  • 스마트 팩토리 시대가 열리면서 발전 플랜트에서 발생하는 빅데이터를 활용한 설비 유지 보수 방법론이 부각되고 있다. 본 연구에서는 데이터 기반 방법론의 효과적인 적용과 발전 플랜트 실시간 성능 모니터링을 위해 사물인터넷 기반 클라우드 플랫폼을 제안한다. Short-term Analysis에서는 사물인터넷 센서를 이용하여 학습된 건전성 인자와 패턴 비교를 통해 설비의 상태 진단과 결과 전송을 목적으로 한다. Long-term Analysis는 취합된 고차원 데이터를 활용하여 설비간 관계 파악과 인과관계 확인을 통한 트렌드 분석을 목적으로 한다. 분석 및 진단 결과는 클라우드 플랫폼의 웹 기반 시스템을 통해 시각화하여 사용자의 접근성을 향상시켜 장소나 접속 기기에 상관없이 데이터를 확인할 수 있도록 한다. 개발된 플랫폼의 성능 검증은 회전기계류 테스트베드로 진행한다.

웹기반 지능형 기술가치평가 시스템에 관한 연구 (A Study on Web-based Technology Valuation System)

  • 성태응;전승표;김상국;박현우
    • 지능정보연구
    • /
    • 제23권1호
    • /
    • pp.23-46
    • /
    • 2017
  • 2000년대 이전부터 북미 유럽의 선진국을 중심으로 특정 기업이나 사업(프로젝트)에 관한 가치를 평가하는 사례는 있어 왔으나, 개별 기술(특허)의 경제적 가치를 산정하는 체계나 방법론은 국내를 중심으로 최근 들어 활성화되어 왔다. 이러한 기술가치평가 분야는 기술이전(거래), 현물출자, 사업타당성 분석, 투자유치, 세무/소송 등의 다양한 용도로 활용되고 있다. 물론 기술보증기금의 KTRS, 발명진흥회의 SMART 3.1과 같이, 평가대상기술에 대한 기술력(등급) 평가 혹은 특허등급평가를 정성적으로 수행하는 온라인 시스템은 존재해 왔으나, 대상기술의 정량적인 가치금액까지 산출해 주는 웹기반 지능형 기술가치평가 시스템은 한국과학기술정보연구원(KISTI)에 의해 유일하게 개발 및 공식 오픈되어 확산 활용되고 있다. 본 고에서는 KISTI에서 개발 운영중인 웹기반 'STAR-Value' 시스템을 중심으로, 탑재된 방법론 및 평가모델의 유형, 이를 지원하는 참조정보 및 데이터베이스(D/B)가 어떻게 연계 활용되는지를 소개한다. 특히 미래에 발생할 경제적 수익을 추정하여 현재가치화하는 소득접근법 기반의 대표 모델인 현금흐름할인(DCF) 모델과 특정 로열티율을 기반으로 로열티수입료의 현재가치를 기술료 대가로 산정하는 로열티절감모델을 포함한 6개 모델, 그리고 관련 지원정보(기술수명, 기업(업종)재무정보, 할인율, 산업기술요소 등)의 데이터 기반 연계 방식에 대해 살펴본다. STAR-Value 시스템은 평가대상기술에 대한 국제특허분류(IPC) 혹은 한국표준산업분류(KSIC) 등의 분류 정보로부터 기술순환주기(TCT) 지수, 유사업종(혹은 유사기업)의 매출액 성장률 및 수익성 데이터, 업종별 가중평균자본비용(WACC) 및 산업기술요소 지수 등 메타데이터값을 자동적으로 불러오고 여기에 조정요인을 반영하여 기술가치의 산출결과가 높은 신뢰성 및 객관성을 가지도록 한다. 나아가 대상기술의 잠재적 시장규모와 해당 사업화주체의 시장점유율에 대한 정보까지 보유 재무데이터 기반으로 참조값을 제시하거나 기존에 완료된 평가사례 축적 기반으로 업종별 유사 기술의 가치범위값을 제시해 준다면, 본 시스템이 보다 지능형으로 지원 모듈을 연계 활용하고 실시간으로 손쉽게 고(高)정확도의 기술가치범위를 제시해 줄 수 있을 것으로 기대된다. 본 고에서는 웹기반 STAR-Value 시스템이 참조데이터 기반으로 지능형 연계를 수행하도록 해주는 모형선택 가이드라인 지원기능, 기술가치범위 추론 지원기능, 유사기업 선정 기반의 시장점유율 산정 지원기능의 내부 로직 구성을 설명한다. 상기 지원기능을 통해 비전문가(또는 초보자) 수준에서 최적의 평가모형 선택, 기술가치 범위 추론, 유사기업 선택 및 시장점유율 산정에 대한 정보지원이 데이터 사이언스 및 기계학습 기반으로 수행될 수 있다. 본 연구는 기술가치평가 분야의 이론적 타당성을 평가실무에서 활용할 수 있는 평가모델 및 지원정보를 실제 탑재한 웹기반 시스템의 소개에 의미가 있으며, 추가적으로 보다 객관적이고 손쉬운 지능형 지원시스템의 활용성을 높임으로써, 앞으로 기술사업화의 제 분야에서 다양하게 활용할 수 있을 것으로 기대된다.

대학 e-러닝의 인식 제고 및 확산에 관한 연구 (Study on the Raise and Diffusion of Understanding of the e-Learning in Universities)

  • 박성두
    • 한국산학기술학회논문지
    • /
    • 제9권4호
    • /
    • pp.1067-1073
    • /
    • 2008
  • 본 연구에서는 e-러닝의 인식 제고 및 확산에 대하여 교수들의 의식조사를 수행한 결과로써 대학차원의 e-러닝 세미나 및 워크숍을 정기적으로 개최하고, e-러닝에 대한 비전과 중단기 정책을 수립하여 미래교육 방향에 맞는 교육시스템을 도입하여 사이버교육 수강을 희망하는 학습자를 위한 전공별 웹 기반 수업을 특성화시켜 운영하며, 대학의 세계화를 위하여 선진 외국의 경쟁력 있는 대학 강의를 수강할 수 있도록 협정을 체결하여 외국 대학과의 콘텐츠 개발 및 교류를 추진하는 것이 필요하다는 결론을 얻었다.

한국어 질의 응답 시스템을 위한 초점단어 기반 질의분석 (Question Analysis based on Focus-words for Korean Question-Answering System)

  • 김원남;신승은;서영훈
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2004년도 추계 종합학술대회 논문집
    • /
    • pp.476-482
    • /
    • 2004
  • 질의 응답 시스템은 사용자의 질의를 분석하여 제한된 길이의 정답을 제시해 주는 시스템이다. 질의 응답 시스템은 정확한 정답을 추출하기 위해 사용자의 질의를 분석하는 과정을 필요로 한다. 본 논문에서는 초점단어(focus-word)를 이용한 질의분석을 제안한다. 초점단어란 정답유형을 결정하는데 단서가 되는 단어로써, 추출된 초점단어에 의해 75개의 하위정답유형 중 하나가 결정된다. 실험에는 학습 데이터의 일부와 일반 Web에서 수집한 테스트 데이터가 사용되었다. 실험결과 상위범주는 97.18%, 하위범주는 95.31%의 정확도를 보였다.

  • PDF

한국어 자가 지식 학습을 위한 패턴 및 인스턴스 생성 (Pattern and Instance Generation for Self-knowledge Learning in Korean)

  • 윤희근;박성배
    • 한국지능시스템학회논문지
    • /
    • 제25권1호
    • /
    • pp.63-69
    • /
    • 2015
  • 웹의 비구조 문서로부터 자동으로 인스턴스를 생성하기 위한 다양한 연구가 제안되었다. 영어권의 기존 연구들에서는 간단한 규칙과 정규식 기반의 패턴을 활용하였다. 영어에서는 단순한 정규식 기반의 패턴만으로도 충분히 높은 정확도를 보여주었지만. 한국어는 영어와 다른 언어적인 특성으로 인하여 기존의 정규식 형태의 패턴으로는 적합한 패턴을 생성할 수 없다. 이에 본 논문에서는 한국어에 적합한 패턴 및 인스턴스 생성 방법을 제안한다. 제안한 방법은 대상 문장의 의존 관계를 고려함으로써 높은 정확도를 가지는 패턴 집합을 생성한다. 또한 인스턴스의 주어(subject)와 목적어(object) 판별을 위하여 조사 정보를 함께 활용함으로써 한국어의 자유로운 어순으로부터 오는 제약을 해결한다. 실험 결과에 따르면 본 논문에서 제안한 패턴 생성 방법이 단순 어순만을 고려하여 생성된 패턴들에 비하여 더 높은 정확률을 보여주어, 한국어 대상 자동 인스턴스 생성에 적합함을 확인하였다.

상호작용 중요도 행렬을 이용한 단백질-단백질 상호작용 예측 (Protein-Protein Interaction Prediction using Interaction Significance Matrix)

  • 장우혁;정석훈;정휘성;현보라;한동수
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권10호
    • /
    • pp.851-860
    • /
    • 2009
  • 최근 계산을 통한 단백질 상호작용 예측 기법 중, 단백질 쌍이 포함하고 있는 도메인들 사이의 관계에 중점을 둔 도메인 정보 기반 예측 기법들이 다양하게 제안되고 있다. 하지만, 다수의 도메인 쌍들이 상호작용에 기여하는 정도를 정밀하게 반영하는 계산 기법은 드문 실정이다. 본 논문에서는 단백질 상호작용에 있어 도메인 조합 쌍의 상호작용 영향력을 수치화하여 반영한 상호작용 중요도 행렬을 고안하고 이를 기반으로 한 단백질 상호작용 예측 시스템을 구현한다. 일반적인 도메인 조합 기법과 달리, 상호작용 중요도 행렬에서는 상호작용을 위한 도메인간의 협업 확률이 고려된 Weighted 도메인 조합과, 다수의 Weighted 도메인 조합 중 실제 상호작용 주체가 될 확률을 도메인 조합 쌍의 힘(Domain Combination Pair Power, DCPPW)으로 수치화한다. DIP과 IntAct에서 얻어온 S. cerevisiae의 단백질 상호작용 데이터와 Pfam-A 도메인 정보를 사용한 정확도 검증 결과, 평균 63%의 민감도와 94%의 특이도를 확인하였으며, 학습집단의 증가에 따른 안정적인 예측 정확도 향상을 보였다. 본 논문에서 구현한 예측 시스템과 학습 데이터는 웹(http://code.google.com/p/prespi)을 통하여 내려 받을 수 있다.

스마트 플랜트를 위한 빅데이터 및 AutoML 플랫폼 개발 (Development of Big Data and AutoML Platforms for Smart Plants)

  • 강진영;정병석
    • 한국빅데이터학회지
    • /
    • 제8권2호
    • /
    • pp.83-95
    • /
    • 2023
  • 스마트 플랜트 발전에 있어서 빅데이터 분석과 인공지능은 중요한 역할을 한다. 본 연구에서는 플랜트 데이터를 위한 빅데이터 플랫폼과 인공지능 기반 플랜트 유지 관리를 위한 'AutoML 플랫폼'을 개발하였다. 빅데이터 플랫폼은 하둡, 스파크, 카프카를 활용하여 플랜트에서 발생하는 대용량의 데이터를 수집, 처리, 적재하는 플랫폼이다. AutoML 플랫폼은 설비의 예지보전 및 공정 최적화를 위한 예측 모델을 구축하는 머신러닝 자동화 시스템이다. 위 플랫폼은 기존 플랜트 운영 정보 시스템과의 호환성을 고려하여 데이터 파이프라인을 구성하고, 웹 기반 GUI를 통해 작업자의 접근성과 편의성을 향상하였으며, 데이터 처리와 학습 알고리즘에 사용자 정의 모듈을 탑재하는 기능을 통해 유연성을 증대시켰다. 본 논문은 국내 정유회사의 특정 공정을 대상으로 플랫폼을 실제 운영해보았고, 이를 통해 스마트 플랜트를 위한 효과적인 데이터 활용 플랫폼 사례를 제시한다.

초등학교 과학 교구 관리시스템 (A Science Instrument Management System for Elementary Schools)

  • 조세현;전우천
    • 정보교육학회논문지
    • /
    • 제8권1호
    • /
    • pp.67-77
    • /
    • 2004
  • 최근 학교 현장에 인터넷의 보급과 함께 새로운 방식의 교육 형태와 학교 업무 전산화의 필요성이 대두되었다. 이에 따라 새로운 교육 방식으로서 ICT (Information & Communication Technology) 활용교육을 통한 다양한 교수-학습 모형이 시도되고 있으나, 학교 업무 전산화는 오프라인에서 종이문서를 단편적으로 입력하고 데이터를 출력하는 형태에 머물러 있다. 따라서 본 연구에서는 웹 기반의 업무처리 방식에 따른 초등학교 과학 교구 관리시스템을 제안한다. 본 시스템의 특징은 다음과 같다. 첫째, 학교에서 관리하는 과학 교구 관리업무를 시 도교육청 기준안에 따라 표준화, 정보화하고 또한 교육청의 교구기준에 따라 자료를 선정하여 업무의 효율성과 신속성을 증진시킨다. 둘째, 교구관리시스템을 기초 정보 관리, 교구 기준 관리, 교구 현황 관리 등으로 구성하여 필요한 정보를 쉽고 빠르게 파악할 수 있다. 셋째, 초등학교 교구기준에 맞추어 설계함으로써 기준량, 보유량 및 부족량의 파악과 교구확충계획을 효율적으로 수립하여 업무의 경감과 인력 및 시간의 낭비를 줄일 수 있다.

  • PDF

자기 조직화 신경망(SOM)을 이용한 협력적 여과 기법의 웹 개인화 시스템에 대한 연구 (Collaborative Filtering System using Self-Organizing Map for Web Personalization)

  • 강부식
    • 지능정보연구
    • /
    • 제9권3호
    • /
    • pp.117-135
    • /
    • 2003
  • 개인화 된 정보를 제공하기 위한 협력 여과 기법에 대한 많은 연구가 이루어지고 있는데, 유사 사용자들을 찾는 과정에서 상관계수와 같은 유사성 척도를 이용하여 모든 사용자와의 유사성을 계산하는 과정을 거친다. 이때 사용자 수가 많아지게 되면, 계산의 복잡도가 지수적으로 증가하게 되는 규모의 문제가 발생한다. 본 연구는 협력 여과 기법에서 주로 사용하는 유사성 척도가 사용자 집단이 커짐에 따라 계산의 복잡도가 지수적으로 증가하는 문제를 해결하기 위한 방안을 제시하는 것이 주목적이다. 규모의 문제를 해결하기 위해 클러스터링 모델 기반 접근 방식을 사용하고 아이템의 선호도 계산을 위해 RPM(Recency, Frequency, Momentary) 기준의 사용을 제안한다. 먼저 SOM을 이용하여 전체 사용자를 사용자 집단으로 클러스터링하고 사용자 집단별로 RFM 기준에 의해 아이템의 점수를 계산하여 선호도가 높은 순으로 정렬하여 저장한다. 사용자가 로그인하면 학습된 SOM을 이용하여 대상 사용자 집단을 선정하고 미리 저장된 추천 아이템을 추천한다. 추천결과에 대해 사용자가 평가하면 그 결과를 이용하여 현 시스템의 개정 여부를 결정한다. 제안한 방안에 대해 MovieLens 데이터 셋에 적용하여 실험한 결과 기존의 협력적 여과 기법에 비해 추천 성능이 비교적 우수하면서도 추천 시스템 운용시의 계산 복잡도를 일정하게 유지시킬 수 있음을 보였다.

  • PDF