• Title/Summary/Keyword: Weathering index

Search Result 116, Processing Time 0.021 seconds

Estimating the Soil Volume Conversion Factor of Weathered Ground with Consideration of Field Situations

  • Jin, Kyu-Nam;Cho, Gye-Chun;Lee, Jung-Min;Ryu, Hee-Hwan;Park, Sung-Wook
    • Land and Housing Review
    • /
    • v.2 no.2
    • /
    • pp.145-155
    • /
    • 2011
  • It is very important for successful construction to estimate the soil volume conversion factor of domestic weathered ground accurately and reasonably. However, it is very difficult to quantify the weathering degree of weathered ground at the field, so that the soil volume conversion factor used in Korea is often dependent upon the standard of foreign countries. Besides, the soil volume conversion factor of domestic weathered ground has been rarely studied and the use and accuracy of the soil volume conversion factor have been questioned persistingly. This study suggests a simple but robust method for estimating the soil volume conversion factor and measuring the weathering degree reasonably, and attempts to establish the utilization of a soil volume conversion factor measurement system based on experimental and analytical results. We made relationship between electrical resistivity and weathering degree presented from weathering index obtained through laboratory tests using field samples, and an estimation method of in-situ weathering degree for granites and a calculation method of soil volume conversion factor using electrical resistivity. And also, we suggested the photogrametry measurement-equipment system for measuring the volume of cargo box and the application plan of stand equipment and RFID for calculating the earth volume and distinguishing buggies in order to design the measurement system for soil volume conversion factor applicable to the field. Ultimately, the Weathered Earth-work Management Program (WEMP) was developed, so field managers may easily obtain the information about earth volume and soil volume conversion factor at the weathered ground.

Adsorption of Decomposed-Granite Soils Varing with Weathering on Heavy Metals (화강풍화토의 풍화도에 따른 중금속 흡착특성)

  • Kwon, Minseok;Lee, Myoungeun;Mok, Youngjin;Chung, Jaewoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.10
    • /
    • pp.59-64
    • /
    • 2013
  • Effects of weathering intensity on the adsorption of heavy metals such as lead(Pb) and copper(Cu) onto decomposed granite soils were investigated by a series of batch tests. The chemical components such as $SiO_2$, $K_2O$ and $Na_2O$ having relatively high solubility were reduced and the oxidized $Fe_2O_3$ content was increased with the increase of weathering intensity. Weathering of granite soils increased the ignition loss and specific surface area, while it decreased the permeability. The lead and copper adsorptions onto the decomposed granites were enhanced with the increase of weathering intensity, mainly due to the increase of specific surface area and clayed contents. Adsorption of lead and copper onto the weathered granites could be more adequately described by the pseudo-second-order kinetic model than the pseudo-first-order model.

Relative Movement of Major Elements on the Weathering of Rocks (암석의 풍화에 따르는 주요성분의 상대적 이동)

  • Nam, Ki-Sang;Cho, Kyu-Seong
    • Economic and Environmental Geology
    • /
    • v.26 no.1
    • /
    • pp.67-81
    • /
    • 1993
  • This dissertation is a basic research on the degradation of rocks and aims at clarifying the relations between the progression of degree of weathering and the variation of chemical composition. The author wants to make clear the degradation of rocks and the process of formation of sedimentary rocks from a standpoint of elucidation of migration of elements. This study is considered to be significant not only as a part of research on the distribution of earth crust materials but as the petrogenesis of rocks. The chemical studies on the weathered rocks have been started relatively early and there are not a few researches on them: Goldich, 1938; Harris, et al., 1966; Ruxton, 1968; Berner, et al., 1982; Kanuss, 1983; Lasaga, 1984; Siagel, 1984. The degree of migration of elements in weathering is the composite result of various factors. Because, at the present time, it is difficult to clarify the individual and composite effects of each factor theoretically and quanititatively, we must accumulate empirical data and use them relatively. In such consideration the author acquired some data of chemical weathering from the chemical analysis of granitic and basaltic rocks in and around Fukuoka city, Japan and granitic rocks in and around Chonju and Iri cities, Korea. Because both rock types studied can be considered as representative materials of acidic and basic rocks compsing the earth crust, it is significant to examine the phenomena of weathering of both rock types. The following results are obtained from the analysis and examinations of chemical compositions of the original and weathered rocks. The loss rate of major elements has no uniformity, but the following relation holds in general; Ca, Na> K, Si> Mg> Fe, Al. As weathering proceeds, the ratio of $Al_2O_3/CaO$ shows increasing phenomena, and that of $Na_2O/CaO$ decreasing. The range of migration of composition is broad in basaltic rocks but narrow in granitic rocks. The reason is that the chemical weathering of basaltic rocks progresses more easily than that of granitic rocks. The chemical weathering potenitial index of basaltic rocks in larger than that of granitic rocks. The reason is that the chemical weathering of basaltic rocks proceeds more easily than that of granitic rocks. In weathering, the decrease of mobile cations such as $Ca^{2+}$, $Na^{2+}$, $Mg^{2+}$ and the increase of $H_2O$ in basaltic rocks are more obvious than in granitic rocks.

  • PDF

Chemical Weathering Trend of Granitic Rock in Hwangtohyun, Korea (한반도 서부 황토현 일대 적색토의 화학적 풍화 경향)

  • Kim, Young-Rae
    • Journal of the Korean association of regional geographers
    • /
    • v.18 no.1
    • /
    • pp.17-26
    • /
    • 2012
  • In Hwangtohyun, meaning 'red soil pass', reddish surface mantles is widespread. Other granitic hills, exceptionally Naju and Youngam area, in Korean peninsula don't commonly have that color. This paper attempts to address this issue by CIA(chemical index of alteration). CIA data and A-CN-K diagram provide crucial insights into the changes in the relative contributions of chemical physical weathering in difference of grus regolith and saprolite. CaO and $Na_2O$ show strong depletion and $K_2O$ is progressive loss. In grus regolith, weathering trends are (sub)parallel to the CN-A join of the A-CN-K diagram, but the sample's composition plot ever closer to the A-K join in saprolite. The difference of weathering trend obtained using CIA data corresponds closely with the visual interpretation of soil color and texture.

  • PDF

A study on the evolution of granite hill on the west coast area (서해안의 화강암 암체 지형 발달에 대한 연구 - 반발 강도와 화학 조성 특징을 중심으로 -)

  • Kim, Jong Yeon;Yang, Dong Yun;Shin, Won Jeong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.21 no.4
    • /
    • pp.19-40
    • /
    • 2014
  • Rock rebound values and chemical compositions of Gamak island at Sangha, Gochang, Jeollabuk do are analysed as a part of geomorphic survey of that area. Some corestones are formed by deep weathering found from the summit of rock mass of Gamak island, while the rocks a part of weathering front are exposed at the foot of the island. Rebound values of rock increase toward coastal plain, so summit would be weak in resistance to erosion. It can be assumed that chemical weathering is more active at the summit by the chemical index of alteration and changes in chemical composition ratio. However it should be mentioned that the samples are taken from the surface of the rock mass that more fresh part will be exposed when the weathered parts are removed. The chemical composition and CIA values of the polygonal cracks found from on the surface of weathering rind showed that this part has values between those of the summit and the footslope. The bottom of weathering rind with polygonal cracks has higher CIA value than those of the surface. Though it supports the result from the Bisul Mt., there also difference in the ratio of SiO2. It looks caused by the difference in weathering environment and chemical difference in parent rock. In summary Gamak island is the remnants of weathering front after removal of weathered material. The removal processes are more active at the footslope where the coastal processes are stronger than the summit.

Analysis of Weathered State on a Halo Stone Buddha, Unju Temple of Hwasun, Korea Using Low Frequency Flaw Detector (저주파 결함 탐지기를 활용한 화순 운주사 광배석불의 풍화상태 분석)

  • Kang, Seong-Seung;Ko, Chin-Surk;Kim, Cheong-Bin;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.235-246
    • /
    • 2013
  • P-wave velocity was measured by the low frequency flaw detector in order to analyze the weathered state of a halo stone Buddha, Unju temple, Hwasun, Korea. By the results of laboratory tests on a fresh acidic tuff with the same rock of a halo stone Buddha, average absorption, average P-wave velocity, and average uniaxial compressive strength were 5.38%, 4,008 m/s, and 70.1 MPa, respectively. The results correspond to moderately strong rock. Average P-wave velocity of a halo stone Buddha measured by the low frequency flaw detector was 2,257 m/s in the left zone, 3,437 m/s in the right zone, and 2,802 m/s overall. Weathering index of a halo stone Buddha was 0.45 in the left zone, 0.21 in the right zone, and 0.33 overall. Comparing the results of a halo stone Buddha with them of laboratory tests, weathered state of a halo stone Buddha was analyzed highly weathered state in the left zone and moderately weathered state in the right zone. Furthermore, it suggests that the left zone of a halo stone Buddha was affected weathering more than the right one. Overall a halo stone Buddha corresponds to moderately weathered state of weathering degrees. In conclusion, it is considered that low frequency flaw detector may be applicable as a valuable method on analyzing the P-wave velocity of the stone cultural heritage with an irregular surface.

Dilatancy Characteristics of Decomposed Granite Soils in Drained Shear Tests (배수전단시험을 이용한 화강토의 다일레이턴시 특성 고찰)

  • Kang, Jin-Tae;Kim, Jong Ryeol;Kim, Seung-Gon;Park, Hwa-Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2C
    • /
    • pp.117-123
    • /
    • 2008
  • Disturbed and undisturbed decomposed granite soils with different weathering degrees were extracted and analyzed through a series of tests (CD test, constant P test, etc.) to assess their dilatancy characteristics. Here, dilatancy refers to the volume change that takes place during shearing. As a result, the decomposed granite soil dilatancy impact increased the mean effective stress while concurrently lowering the water content in drained shear tests. In the case of undisturbed decomposed granite soil, which has a lower weathering degree, the water content increased at specific limits during the shearing process. A linear relationship of ${\Delta}V_d/V_1=D{\cdot}(({\sigma}_1-{\sigma}_3)-{\sigma}_c)/{{\sigma}_m}^{\prime}$ forms between shearing-induced volume change and principal stress variance.

Thermal Stresses of Roller Compacted Concrete Dam Considering Construction Sequence and Seasonal Temperature (시공단계 및 계절별 온도영향을 고려한 롤러다짐콘크리트댐의 온도응력 해석)

  • Cha, Soo-Won;Jang, Bong-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.881-891
    • /
    • 2008
  • The purpose of the present study is to investigate the influence of seasonal temperature variation on the thermal stresses in roller compacted concrete dam(RCD) structures. Using the finite element code, DIANA performs 2-D transient temperature and resultant stress analysis for RCD. Time variability of the mesh geometry is considered in order to simulate successive phases of the structure's construction. The main analysis variables are construction sequence, concrete temperature and ambient temperature. The results show principal tensile stress of hot-weathering concrete is higher than that of cold-weathering concrete. In some case the index of thermal cracking excesses 1.0, RCD also needs thermal management on placing temperature according to weather condition.

Evaluation of Weathering Intensity and Strength Parameter for Weathered Granite Masses (I) (화강 풍화암의 풍화도 및 강도정수의 평가 (I))

  • 이종규;장서만
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.227-236
    • /
    • 2003
  • The evaluation of the reliable strength and deformation characteristics of weathered granite masses is very important for the design of geotechnical structure under working stress conditions. Various types of laboratory test such as triaxial compression test can be performed to determine the strength parameters. However, it is very difficult to obtain the representative undisturbed samples on the site and also the rock specimen cannot represent rock mass including discontinuities, fracture zone, etc. This study aims to investigate the strength and deformation characteristics of granite masses corresponding to its weathering and develop a practical strength parameter evaluation method using the results of PMT. To predict weathering intensity and strength parameters of the weathered granite masess in the field, various laboratory tests and in-situ tests including field triaxial test and PMT are carried out. Based on the results of weathering index tests, the classification method is proposed to identify the weathering degree in three groups for the weathered granite masses. Using the analytical method based on the Mohr-Coulomb failure criteria and the cavity expansion theory, the strength parameters of rock masses were evaluated from the results of PMT. It shows that weathering intensity increases with decreasing the strength parameters exponentially. The strength parameters evaluated with the results of PM almost coincide with the results of field triaxial test.