• Title/Summary/Keyword: Weathered Granite Soils

Search Result 132, Processing Time 0.02 seconds

A Study on the Strength Parameter(${\psi}$) of the Disturbed Weathered Soil by Triaxial Compression Test (삼축압축시험에 의한 교란화강암 풍화토 내부마찰각(${\psi}$)의 특성)

  • Jeon, Woo-Jeong;Ryu, Je-Soo;Cho, Sung-Bum
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.386-389
    • /
    • 2001
  • The strength parameters of two different type of disturbed weathered soils were investigated by the triaxial tests in this study. Soil samples include granite soils from two different sites and non-granite soils from six sampling sites. The results of this study indicate that the triaxial tests could be employed for determining the strength parameters for disturbed soil samples. When additional parameters are obtained by further experiments, they could be utilized in various engineering design practices.

  • PDF

Frost Heaving Pressure and Physical Characteristics of the Railway Roadbed Materials (철도노반재료의 동상팽창압 및 물리적 특성 평가)

  • Shin Eun-Chul;Park Jeong-Jun;Kim Jong-In
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.1
    • /
    • pp.57-62
    • /
    • 2005
  • The frost heaving pressure can be a problem for weakening of the railway roadbed material. This study was initiated to investigate the soils frost heaving pressure and physical characteristics(Liquid limit, permeability, SEM analysis) resulting from freezing and freezing-thawing cycle process. Therefore, upon freezing a saturated soil in a closed-system from the top, a considerable pressure was developed. Weathered granite soils, sandy soil were used in the laboratory freezing test which sometimes subjected to thermal gradients under closed-systems. The frost heaving pressure arising within the soil samples and the temperature of the samples inside were monitored with elapsed time. The degree of saturation versus heaving pressure curve is also presented for weathered granite soil and the maximum pressure is closely related to this curve. Based on the laboratory test results, fine-grained soils with strong attractive forces between soil grains md water molecules, and additional water is attracted into the pores leading to further volume changes and ice segregation.

Undisturbed Sampler for Characterizing the Behaviour of Weathered Granite Residual Soils (화강풍화토의 거동 특성 규명을 위한 비교란 시료채취기 개발)

  • 정순용;이승래
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.13-24
    • /
    • 1997
  • In Korea, granite is abundant and occupies around two-thirds of the country's ground. Bven though weathered granite residual soils are widely distributed, undisturbed sampling of this soil is extremely difficult because of the particultate structure. This difficulty has kept away the researchers from investigating !he deformational characteristics of weathered granite residual soil. Thus, a special undisturbed sampling device was developed and undisturbed samples were prepared for triaxial compression (TX), resonant column(RC), and torsional shear (75) tests. Local deformation transducer (LDT) was fabricated for internal strain measurements during TX tests. Both undisturbed samples and statically compacted samples of same density were tested by using TX with LDT, RC, and 75 test equipments. The behaviour of statically compacted specimens was almost the same as that of undisturbed samples in the strain ranges below 1 percent. The stiffness and strength decreased with increasing degree of weathering. In case of undisturbed specimens, strains at failure are widely varied from 2 percent to 11 percent, and planes of failure are irrelevant to the angle of internal friction due to the inhomogeneous nature.

  • PDF

An Engineering Characteristics of Weathered Granite Soil-Bentonite Mixtures (화강풍화토-벤토나이트 혼합토의 공학적 특성)

  • Kim, Daeman;Kim, Kiyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.45-56
    • /
    • 2006
  • Recently, the more potential waste sites are being required as increasing the demand of better human life. But the construction of waste disposals has many restrictions because of lack of good quality clay and high cost of liners. So, in this study, we studied the liner materials to develop more cheaper soil liner that can be satisfied the environmental criterion for the coefficient of permeability and shear strength. A series of compaction test and triaxial (consolidation, permeability, and shear) tests were performed to obtain the optimized weight ratio of Bentonite-Soil mixture (B/S) including the least amount of bentonite. A series of soil tests were performed to acquire the appropriate weathered granite soil-bentonite mixture that is satisfied the environmental criterion of soil liner($k=1{\times}10^{-7}cm/sec$). At first, weathered granite soils were classified with four different particle-size soils, and B/S ratio was increased as 5% step for each particle-size. The test results showed that in case of weathered granite soil passing through No. 100 sieve, B/S=15% satisfied the soil liner criterion. The measured coefficient of permeability and the Chapuis's two equations were also compared. And a predicting equation for the coefficient of permeability was suggested, which is suitable for the mixture soil with the B/S ratio used in this study. The optimal weight ratio for the mixture soils used in this study was 15% in the both cases of permeability and shear strength.

  • PDF

The Shear Strength Characteristics of Weathered Granite Soil in Unsaturated State (불포화(不飽和) 화강암질풍화토(花崗岩質風化土)의 전단강도(剪斷强度) 특성(特性))

  • Cho, Seong Seup;Kang, Yea Mook;Chee, In Taeg
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.1
    • /
    • pp.86-100
    • /
    • 1985
  • In order to investigate the strength characteristics of weathered granite soils in unsaturated state, the five physically different weathered granite soils and the common soil (sandy loam) were examined. The disturbed and the undisturbed material were prepared for triaxial compression test. The following conclusions were drawn from the study; 1. Dry density of the undisturbed soil samples was lower than maximum dry density determined from the compaction test and it showed the higher value at the well graded soil. 2. The failure strength of the samples decreased with the increase of moisture content of the soil and these results were highly pronounced at the common soil sample having a good cohesive property. 3. On weathered granite soils, the cohesion was lower measured and the internal friction angle highly, the decrease rate at internal friction angle with increase of moisture content of the soil was more significant than that of cohesion 4. The modulus of deformation of the samples decreased with increase of moisture content of the soil and these phenomena were highly pronounced at the weathered granite soils than common soil. 5. The failure strength of the samples increased with in crease of confining pressure and effect of confining pressure on failure strength was highly significant at the lower moisture content of the soil.

  • PDF

A Study on the Geotechnical Property caused by Contact Volume between Weathered Soils and Moisture Sensor for Application of Field Monitoring (현장 모니터링 적용을 위한 풍화토와 함수비센서의 접촉체적에 따른 지반물성 연구)

  • Kim, Man-Il;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.18 no.3
    • /
    • pp.311-319
    • /
    • 2008
  • Evaluation of an amplitude domain reflectometry (ADR) type soil moisture sensor as ThetaProbe ML2x using the response of frequency impedance was performed in a variety of soil porous media such as Jumunjin standard sand, weathered granite soil at Sangju area, and weathered gneiss soil at Jangsu area. The tested soils were classified with a dried condition and a wetted condition for comparing with soil volumetric water content under different installed depths of the measurement sensor. In the results the part of measurement rod including one signal rod and three shield rod 6cm in length was found to decrease the variation of measurement output voltage with insert 5cm over into the soil porous media. The measurement output voltage was verified to more stable output voltage under weathered granite soils and weathered gneiss soils contained the fine grain materials such as clay and silt minerals than the gradual grain material like as the standard sands. Therefore, measurement values by soil moisture sensor can be offered the more stable values when an contact volume between soil porous media and measurement sensor increase.

Estimation of Soil Water Characteristic Curve and Unsaturated Permeability Coefficient for Domestic Weathered Grainite Soil (국내 풍화토의 함수특성곡선 및 불포화 투수계수 추정에 관한 연구)

  • Lee, Sung-Jin;Kim, Yun-Ki;Lee, Hye-Ji;Lee, Seung-Rae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.334-341
    • /
    • 2004
  • The coefficient of permeability is one of the most important properties in unsaturated soils. The permeability varies with change in the water content as the soil water characteristic curve(SWCC) does. Thus the permeability curve of unsaturated soils has the similar shape with the soil-water characteristic curve(SWCC). Therefore, the methodologies have been studied to simply predict the unsaturated permeability from the SWCC. In this study, the experimental tests of SWCC and permeability were carried out for domestic weathered granite soils. The SWCC test results were fitted to Fredlund and Xing's SWCC equation and then it was found that there are some relationships between the parameters of SWCC equation and the basic soil properties. Accordingly we used an ANN(artificial neural network) model to obtain the SWCC parameters from the basic soil properties. Finally, the coefficients of permeability were predicted from these results by a prediction model.

  • PDF

Geotechnical Chsracterization of Weathered Granite Soils in Korea (한국에 분포하는 화강암 풍화토의 토질공학적 특성)

  • 이수곤
    • Geotechnical Engineering
    • /
    • v.9 no.3
    • /
    • pp.5-22
    • /
    • 1993
  • A series of laboratory tests (physical and mechanical index and engineering design) were conducted on undisturbed granite soils of CW and RS weathering grades in Korea. From these testes it can be concluded that most of physical and mechanical index values are very sensitive to change in weathering grade from CW to RS. Engineering design tests indicate that the unconfined compressive strength and the shear strength parameters are significantly reduced and that the soil becomes ductile and plastic with increasing weathering and saturation. It was found that weathered granite soils have the special characteristics when water saturated: (i) they significantly lose their shear strength(especially cohesion) and unconfined compressive strength, (ii) they are fragile and their grains break down in water as observed in grain size analysis.

  • PDF

A new thermal conductivity estimation model for weathered granite soils in Korea

  • Go, Gyu-Hyun;Lee, Seung-Rae;Kim, Young-Sang;Park, Hyun-Ku;Yoon, Seok
    • Geomechanics and Engineering
    • /
    • v.6 no.4
    • /
    • pp.359-376
    • /
    • 2014
  • Thermal conductivity of ground has a great influence on the performance of Ground Heat Exchangers (GHEs). In general, the ground thermal conductivity significantly depends on the density (or porosity) and the moisture content since they are decisive factors that determine the interface area between soil particles which is available for heat transfer. In this study, a large number of thermal conductivity experiments were conducted for soils of varying porosity and moisture content, and a database of thermal properties for the weathered granite soils was set up. Based on the database, a 3D Curved Surface Model and an Artificial Neural Network Model (ANNM) were proposed for estimating the thermal conductivity. The new models were validated by comparing predictions by the models with new thermal conductivity data, which had not been used in developing the models. As for the 3D CSM, the normalized average values of training and test data were 1.079 and 1.061 with variations of 0.158 and 0.148, respectively. The predictions became somewhat unreliable in a low range of thermal conductivity values in considering the distribution pattern. As for the ANNM, the 'Logsig-Tansig' transfer function combination with nine neurons gave the most accurate estimates. The normalized average values of training data and test data were 1.006 and 0.954 with variations of 0.026 and 0.098, respectively. It can be concluded that the ANNM gives much better results than the 3D CSM.

A Study on the Chemical Weathering Characteristics of the Weathered Granite Residual Soils prone to Laterization (적황색토화된 화강암질 풍화잔적토의 화학적 풍화특성에 관한 연구)

  • 정두영;이광준
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.115-130
    • /
    • 1996
  • The definition of laterite or lateritic soils is discussed on a climatic condition of tropical and semitropical regions, and the weathering index is indicated by the chemical composition. The chemical composition of$(Fe_2O_3+Al_2O_3)$ of the weathered granite residual soils in tropical and the temperate regions which shelus laterization usually ranges from 0.2 to 0.5. This study shows that the chemical ratio of the Chonju Ajung site is about 0.2U, and that of the regions along the shore of the western sea of Hongsong and Taechon is about 0.33. The chemical ratio of the non-laterite is less than 0.2, and the Kyougju Pulguksa site confirmed about 0.17, The X-Ray diffraction test shows that the clay mineral of the laterite soils is made of kaolinite, this X -Ray result indicates the same characteristics compared with the wrathered granite residual soils of other sites.

  • PDF