• Title/Summary/Keyword: Weather state model

Search Result 103, Processing Time 0.025 seconds

Analyzing off-line Noah land surface model spin-up behavior for initialization of global numerical weather prediction model (전지구수치예측모델의 토양수분 초기화를 위한 오프라인 Noah 지면모델 스핀업 특성분석)

  • Jun, Sanghee;Park, Jeong-Hyun;Boo, Kyung-On;Kang, Hyun-Suk
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.3
    • /
    • pp.181-191
    • /
    • 2020
  • In order to produce accurate initial condition of soil moisture for global Numerical Weather Prediction (NWP), spin-up experiment is carried out using Noah Land Surface Model (LSM). The model is run repeatedly through 10 years, under the atmospheric forcing condition of 2008-2017 until climatological land surface state is achieved. Spin-up time for the equilibrium condition of soil moisture exhibited large variability across Koppen-Geiger climate classification zone and soil layer. Top soil layer took the longgest time to equilibrate in polar region. From the second layer to the fourth layer, arid region equilibrated slower (7 years) than other regions. This result means that LSM reached to equilibrium condition within 10 year loop. Also, spin-up time indicated inverse correlation with near surface temperature and precipitation amount. Initialized from the equilibrium state, LSM was spun up to obtain land surface state in 2018. After 6 months from restarted run, LSM simulates soil moisture, skin temperature and evaportranspiration being similar land surface state in 2018. Based on the results, proposed LSM spin-up system could be used to produce proper initial soil moisture condition despite updates of physics or ancillaries for LSM coupled with NWP.

A Fundamental Study on the Development of Irrigation Control Model in Soilless Culture of Cucumber (양액재배 오이의 급액제어모델 개발에 관한 기초연구)

  • 남상운;이남호;전우정;황한철;홍성구;허연정
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.224-229
    • /
    • 1998
  • This study was conducted to develop the simple and convenient irrigation control model which can maintain the appropriate rates of irrigation and drainage of nutrient solution according to the environmental conditions and growth stages in soilless culture of cucumber. In order to obtain fundamental data for development of the model, investigation of the actual state of soilless culture practices was carried out. Most irrigation systems of soilless culture were controlled by the time clock. Evapotranspiration of cucumber in soilless culture was investigated and correlations with environmental conditions were analyzed, and its prediction model was developed. A irrigation control model based on the time clock control and there were considered seasons, weather conditions, and growth stages was developed. Applicability of the model was tested by simulation. Drainage rates of irrigation system controlled by conventional time clock, integrated solar radiation, and the developed model were 61%, 20%, and 32%, respectively in cucumber perlite culture.

  • PDF

The study of the calculation of energy consumption load for heating and cooling in building using the Laplace Transform solution

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.3
    • /
    • pp.292-300
    • /
    • 2014
  • The Laplace Transform solution is used as a mathematical model to analyse the thermal performance of the building constructed using different wall materials. The solution obtained from Laplace Transform is an analytical solution of an one dimensional, linear, partial differential equation for wall temperature profiles and room air temperatures. The main purpose of the study is showing the detail of obtaining solution process of the Laplace Transform. This study is conducted using weather data from two different locations in Korea: Seoul, Busan for both winter and summer conditions. A comparison is made for the cases of an on-off controller and a proportional controller. The weather data are processed to yield hourly average monthly values. Energy consumption load is well calculated from the solution. The result shows that there is an effect of mass on the thermal performance of heavily constructed house in mild weather conditions such as Busan. Building using proportional control experience a higher comfort level in a comparison of building using on-off control.

Simulation of Rough Rice Drying by Natural Air(II) : Factors Evaluation and Feasibility Study for Tropical Weather (자연공기(自然空氣)에 의(依)한 벼 건조(乾燥) 시뮤레이션(II) : 요인분석(要因分析) 및 열대기후하(熱帶氣候下)의 건조가능성(乾燥可能性) 조사(調査))

  • Chang, D.I.;Chung, D.S.
    • Korean Journal of Agricultural Science
    • /
    • v.11 no.2
    • /
    • pp.270-277
    • /
    • 1984
  • The effects of factors of natural air drying were evaluated by the simulation model for rough rice drying. The factors were airflow rate, harvest date, initial moisture content and weather conditions. For simulation, the RICEDRY (Chang et al., 1983) was used. Then, the applicability of the model and the feasibility of rough rice drying by natural air were tested under the tropical weather conditions of Costa Rica.

  • PDF

A Fundamental Study on the Development of Irrigation Control Model in Soilless Culture (양액재배 급액제어모델 개발에 관한 기초연구)

  • 남상운
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.2
    • /
    • pp.37-43
    • /
    • 1999
  • This study was conducted to develop the simple and convenient irrigation control model which can maintain the appropriate rates of irrigation and drainage of nutrient solution according to the enviornmental conditions and growth stages in soilless culture of cucumber. In order to obtain fundamental data for development of the model, investigation of the actual state of soilless culture practices was carried out. Most irrigatioin systems of soillness culture were controlled by the time colock. Evapotranspiration of cucumber in soilness culture was investigated and correlations with environmental conditions were analyzed , and its estimating model was developed. In order to develop the irrigation system which can control the amount of nutrient solution applied according to seasons, weather conditions, and growth stages, a irrigation clock control was developed. Applicability of the model was tested by simulation. Drainage rates of nutrient solution controlled by conventional time clock, integrated solar radiation, and the developed model were 61% , 20%, and 32% , respectively in cucumber perlite culture.

  • PDF

Development of a gridded crop growth simulation system for the DSSAT model using script languages (스크립트 언어를 사용한 DSSAT 모델 기반 격자형 작물 생육 모의 시스템 개발)

  • Yoo, Byoung Hyun;Kim, Kwang Soo;Ban, Ho-Young
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.3
    • /
    • pp.243-251
    • /
    • 2018
  • The gridded simulation of crop growth, which would be useful for shareholders and policy makers, often requires specialized computation tasks for preparation of weather input data and operation of a given crop model. Here we developed an automated system to allow for crop growth simulation over a region using the DSSAT (Decision Support System for Agrotechnology Transfer) model. The system consists of modules implemented using R and shell script languages. One of the modules has a functionality to create weather input files in a plain text format for each cell. Another module written in R script was developed for GIS data processing and parallel computing. The other module that launches the crop model automatically was implemented using the shell script language. As a case study, the automated system was used to determine the maximum soybean yield for a given set of management options in Illinois state in the US. The AgMERRA dataset, which is reanalysis data for agricultural models, was used to prepare weather input files during 1981 - 2005. It took 7.38 hours to create 1,859 weather input files for one year of soybean growth simulation in Illinois using a single CPU core. In contrast, the processing time decreased considerably, e.g., 35 minutes, when 16 CPU cores were used. The automated system created a map of the maturity group and the planting date that resulted in the maximum yield in a raster data format. Our results indicated that the automated system for the DSSAT model would help spatial assessments of crop yield at a regional scale.

Application of Common Land Model in the Nakdong River Basin, Korea for Simulation of Runoff and Land Surface Temperature (Common Land Model의 국내 적용성 평가를 위한 유량 및 지면온도 모의)

  • Lee, Keon Haeng;Choi, Hyun Il;Kwon, Hyun Han;Kim, Sangdan;Chung, Eu Gene;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.247-258
    • /
    • 2013
  • A grid-based configuration of Land Surface Models (LSMs) coupled with a climate model can be advantageous in impact assessment of climate change for a large scale area. We assessed the applicability of Common Land Model (CoLM) to runoff and land surface temperature (LST) simulations at the domain that encompasses the Nakdong river basin. To establish a high resolution model configuration of a $1km{\times}1km$ grid size, both surface boundary condition and atmospheric inputs from the observed weather data in 2009 were adjusted to the same resolution. The Leaf Area Index (LAI) was collected from MODerate esolution Imaging Spectroradiometer (MODIS) and the downward short wave flux was produced by a nonstationary multi-site weather state model. Compared with the observed runoffs at the stations on Nakdong river, simulated runoffs properly responded to rainfall. The spatial features and the seasonal variations of the domain fairly well were captured in the simulated LSTs as well. The monthly and seasonal trend of LST were described well compared to the observations, however, the monthly averaged simulated LST exceeded the observed up to $2^{\circ}C$ at the 24 stations. From the results of our study, it is shown that high resolution LSMs can be used to evaluate not only quantity but also quality of water resources as it can capture the geographical features of the area of interest and its rainfall-runoff response.

A study on indoor environmental elements of the granite model dome in different envelope materials during summer season (하절기, 석재 모형돔의 외피 유형별 실내환경 요소에 관한 연구)

  • 공성훈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.898-902
    • /
    • 1999
  • During summer season, the weather condition of Korea is hot and humid. So humidity elements are very important relating to building envelope condition. The purpose of this investigation is to measure and analyze characteristics of summer's environmental elements such as relative humidity, dry bulb temperature and air velocity in the clay/cement envelope materials using a granite dome model. According to the variation of exterior humidity, the state of interior relative humidity for clay model has an equal tendency, although a little range of variation is shown in comparison to the cement model.

  • PDF

Learning the Covariance Dynamics of a Large-Scale Environment for Informative Path Planning of Unmanned Aerial Vehicle Sensors

  • Park, Soo-Ho;Choi, Han-Lim;Roy, Nicholas;How, Jonathan P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.326-337
    • /
    • 2010
  • This work addresses problems regarding trajectory planning for unmanned aerial vehicle sensors. Such sensors are used for taking measurements of large nonlinear systems. The sensor investigations presented here entails methods for improving estimations and predictions of large nonlinear systems. Thoroughly understanding the global system state typically requires probabilistic state estimation. Thus, in order to meet this requirement, the goal is to find trajectories such that the measurements along each trajectory minimize the expected error of the predicted state of the system. The considerable nonlinearity of the dynamics governing these systems necessitates the use of computationally costly Monte-Carlo estimation techniques, which are needed to update the state distribution over time. This computational burden renders planning to be infeasible since the search process must calculate the covariance of the posterior state estimate for each candidate path. To resolve this challenge, this work proposes to replace the computationally intensive numerical prediction process with an approximate covariance dynamics model learned using a nonlinear time-series regression. The use of autoregressive time-series featuring a regularized least squares algorithm facilitates the learning of accurate and efficient parametric models. The learned covariance dynamics are demonstrated to outperform other approximation strategies, such as linearization and partial ensemble propagation, when used for trajectory optimization, in terms of accuracy and speed, with examples of simplified weather forecasting.

Quasi Steady Stall Modelling of Aircraft Using Least-Square Method

  • Verma, Hari Om;Peyada, N.K.
    • International Journal of Aerospace System Engineering
    • /
    • v.7 no.1
    • /
    • pp.21-27
    • /
    • 2020
  • Quasi steady stall is a phenomenon to characterize the aerodynamic behavior of aircraft at high angle of attack region. Generally, it is exercised from a steady state level flight to stall and its recovery to the initial flight in a calm weather. For a theoretical study, such maneuver is demonstrated in the form of aerodynamic model which consists of aircraft's stability and control derivatives. The current research paper is focused on the appropriate selection of aerodynamic model for the maneuver and estimation of the unknown model coefficients using least-square method. The statistical accuracy of the estimated parameters is presented in terms of standard deviations. Finally, the validation has been presented by comparing the measured data to the simulated data from different models.