• Title/Summary/Keyword: Weather recognition

Search Result 103, Processing Time 0.029 seconds

Development of a Weather Forecast Service Based on AIN Using Speech Recognition (음성 인식을 이용한 지능망 기반 일기예보 서비스 개발)

  • Park Sung-Joon;Kim Jae-In;Koo Myoung-Wan;Jhon Chu-Shik
    • MALSORI
    • /
    • no.51
    • /
    • pp.137-149
    • /
    • 2004
  • A weather forecast service with speech recognition is described. This service allows users to get the weather information of all the cities by saying the city names with just one phone call, which was not provided in the previous weather forecast service. Speech recognition is implemented in the intelligent peripheral (IP) of the advanced intelligent network (AIN). The AIN is a telephone network architecture that separates service logic from switching equipment, allowing new services to be added without having to redesign switches to support new services. Experiments in speech recognition show that the recognition accuracy is 90.06% for the general users' speech database. For the laboratory members' speech database, the accuracies are 95.04% and 93.81%, respectively in simulation and in the test on the developed system.

  • PDF

Weather Recognition Based on 3C-CNN

  • Tan, Ling;Xuan, Dawei;Xia, Jingming;Wang, Chao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3567-3582
    • /
    • 2020
  • Human activities are often affected by weather conditions. Automatic weather recognition is meaningful to traffic alerting, driving assistance, and intelligent traffic. With the boost of deep learning and AI, deep convolutional neural networks (CNN) are utilized to identify weather situations. In this paper, a three-channel convolutional neural network (3C-CNN) model is proposed on the basis of ResNet50.The model extracts global weather features from the whole image through the ResNet50 branch, and extracts the sky and ground features from the top and bottom regions by two CNN5 branches. Then the global features and the local features are merged by the Concat function. Finally, the weather image is classified by Softmax classifier and the identification result is output. In addition, a medium-scale dataset containing 6,185 outdoor weather images named WeatherDataset-6 is established. 3C-CNN is used to train and test both on the Two-class Weather Images and WeatherDataset-6. The experimental results show that 3C-CNN achieves best on both datasets, with the average recognition accuracy up to 94.35% and 95.81% respectively, which is superior to other classic convolutional neural networks such as AlexNet, VGG16, and ResNet50. It is prospected that our method can also work well for images taken at night with further improvement.

A Study on Secondary School Students' Recognition on Weather Proverbs and Application to Science Teaching (일기속담에 대한 중.고등학생들의 인식과 과학수업에의 이용)

  • Kook, Dong-Sik;Lee, Cheol-Woo
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.1 no.1
    • /
    • pp.85-98
    • /
    • 2008
  • Though the investigation of the suggested references proverbs related weather were collected and considered the probability of the usage on science instruction. The results are as follows. 130 proverbs related to weather were collected through the investigation of the suggested references. Most of weather proverbs are based on the states of sky, clouds, wind, precipitation, actions of animal, states of plants and the condition of people in daily life. they were classified according to weather types, natural phenomena and seasons. According to the results of analysing the students' recognition and interests on weather proverbs, most of students heard weather proverbs in their elementary school years firstly through their parents, books, and teachers. However they have only heard a few. Also many students also tend to think weather proverbs have a scientific base because weather proverbs have been told by many people through the ancient time and correspond to their personal experiences. Students responded that weather proverbs are useful for science learning on weather and can teach heritage and wisdom. After reading the suggested weather proverbs, their interests on weather proverbs were increased more than before reading. This is one of reasons why weather proverbs can be introduced to science classes. Weather proverbs were considered related to science curriculum. The third grade has a Unit "Fine days and Cloudy days", the fifth grade, "Unit of Weather Change", the Sixth grade, "Unit of Weather Forecast" , the Ninth grade, "Unit of Water cycle and Weather Change" and the tenth grade has "Unit of Earth". So the author consider that weather proverb materials can be used so effectively to bring about interest and motive in science learning.

  • PDF

Development of Radar-enabled AI Convergence Transportation Entities Detection System for Lv.4 Connected Autonomous Driving in Adverse Weather

  • Myoungho Oh;Mun-Yong Park;Kwang-Hyun Lim
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.190-201
    • /
    • 2023
  • Securing transportation safety infrastructure technology for Lv.4 connected autonomous driving is very important for the spread of autonomous vehicles, and the safe operation of level 4 autonomous vehicles in adverse weather has limitations due to the development of vehicle-only technology. We developed the radar-enabled AI convergence transportation entities detection system. This system is mounted on fixed and mobile supports on the road, and provides excellent autonomous driving situation recognition/determination results by converging transportation entities information collected from various monitoring sensors such as 60GHz radar and EO/IR based on artificial intelligence. By installing such a radar-enabled AI convergence transportation entities detection system on an autonomous road, it is possible to increase driving efficiency and ensure safety in adverse weather. To secure competitive technologies in the global market, the development of four key technologies such as ① AI-enabled transportation situation recognition/determination algorithm, ② 60GHz radar development technology, ③ multi-sensor data convergence technology, and ④ AI data framework technology is required.

Analyzing the Customers' Intentions of Purchasing Weather Index Insurance (지수형 날씨보험 가입의향에 대한 분석)

  • Park, Ki-Jun;Hwang, Jin-Tae;Cho, Jae-Rin;Kim, Baek-Jo;Kim, In-Gyum
    • Journal of Environmental Science International
    • /
    • v.23 no.2
    • /
    • pp.171-180
    • /
    • 2014
  • This study provides the empirical results of the customers' necessity and intentions of purchasing weather index insurance using survey of asking the customers' recognition about weather insurance. In this article, we discovered that not only the customers' past experience of loss but also the extent of damage and the effects that change in weather would have on their firm are positively related to an intention to purchase weather index insurance. In addition, the level of premiums was significantly higher for the highly-intended group of willing to purchase weather index insurance than the comparison group.

Improving Wind Speed Forecasts Using Deep Neural Network

  • Hong, Seokmin;Ku, SungKwan
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.327-333
    • /
    • 2019
  • Wind speed data constitute important weather information for aircrafts flying at low altitudes, such as drones. Currently, the accuracy of low altitude wind predictions is much lower than that of high-altitude wind predictions. Deep neural networks are proposed in this study as a method to improve wind speed forecast information. Deep neural networks mimic the learning process of the interactions among neurons in the brain, and it is used in various fields, such as recognition of image, sound, and texts, image and natural language processing, and pattern recognition in time-series. In this study, the deep neural network model is constructed using the wind prediction values generated by the numerical model as an input to improve the wind speed forecasts. Using the ground wind speed forecast data collected at the Boseong Meteorological Observation Tower, wind speed forecast values obtained by the numerical model are compared with those obtained by the model proposed in this study for the verification of the validity and compatibility of the proposed model.

AI Multimodal Sensor-based Pedestrian Image Recognition Algorithm (AI 멀티모달 센서 기반 보행자 영상인식 알고리즘)

  • Seong-Yoon Shin;Seung-Pyo Cho;Gwanghung Jo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.407-408
    • /
    • 2023
  • In this paper, we intend to develop a multimodal algorithm that secures recognition performance of over 95% in daytime illumination environments and secures recognition performance of over 90% in bad weather (rainfall and snow) and night illumination environments.

  • PDF

A Realtime Road Weather Recognition Method Using Support Vector Machine (Support Vector Machine을 이용한 실시간 도로기상 검지 방법)

  • Seo, Min-ho;Youk, Dong-bin;Park, Sae-rom;Jun, Jin-ho;Park, Jung-hoon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1025-1032
    • /
    • 2020
  • In this paper, we propose a method to classify road weather conditions into rain, fog, and sun using a SVM (Support Vector Machine) classifier after extracting weather features from images acquired in real time using an optical sensor installed on a roadside post. A multi-dimensional weather feature vector consisting of factors such as image sharpeness, image entropy, Michelson contrast, MSCN (Mean Subtraction and Contrast Normalization), dark channel prior, image colorfulness, and local binary pattern as global features of weather-related images was extracted from road images, and then a road weather classifier was created by performing machine learning on 700 sun images, 2,000 rain images, and 1,000 fog images. Finally, the classification performance was tested for 140 sun images, 510 rain images, and 240 fog images. Overall classification performance is assessed to be applicable in real road services and can be enhanced further with optimization along with year-round data collection and training.

Vehicle Image Recognition Using Deep Convolution Neural Network and Compressed Dictionary Learning

  • Zhou, Yanyan
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.411-425
    • /
    • 2021
  • In this paper, a vehicle recognition algorithm based on deep convolutional neural network and compression dictionary is proposed. Firstly, the network structure of fine vehicle recognition based on convolutional neural network is introduced. Then, a vehicle recognition system based on multi-scale pyramid convolutional neural network is constructed. The contribution of different networks to the recognition results is adjusted by the adaptive fusion method that adjusts the network according to the recognition accuracy of a single network. The proportion of output in the network output of the entire multiscale network. Then, the compressed dictionary learning and the data dimension reduction are carried out using the effective block structure method combined with very sparse random projection matrix, which solves the computational complexity caused by high-dimensional features and shortens the dictionary learning time. Finally, the sparse representation classification method is used to realize vehicle type recognition. The experimental results show that the detection effect of the proposed algorithm is stable in sunny, cloudy and rainy weather, and it has strong adaptability to typical application scenarios such as occlusion and blurring, with an average recognition rate of more than 95%.

Runway visual range prediction using Convolutional Neural Network with Weather information

  • Ku, SungKwan;Kim, Seungsu;Hong, Seokmin
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.190-194
    • /
    • 2018
  • The runway visual range is one of the important factors that decide the possibility of taking offs and landings of the airplane at local airports. The runway visual range is affected by weather conditions like fog, wind, etc. The pilots and aviation related workers check a local weather forecast such as runway visual range for safe flight. However there are several local airfields at which no other forecasting functions are provided due to realistic problems like the deterioration, breakdown, expensive purchasing cost of the measurement equipment. To this end, this study proposes a prediction model of runway visual range for a local airport by applying convolutional neural network that has been most commonly used for image/video recognition, image classification, natural language processing and so on to the prediction of runway visual range. For constituting the prediction model, we use the previous time series data of wind speed, humidity, temperature and runway visibility. This paper shows the usefulness of the proposed prediction model of runway visual range by comparing with the measured data.