• Title/Summary/Keyword: Weather radar image

Search Result 86, Processing Time 0.025 seconds

Waterbody Detection Using UNet-based Sentinel-1 SAR Image: For the Seom-jin River Basin (UNet기반 Sentinel-1 SAR영상을 이용한 수체탐지: 섬진강유역 대상으로)

  • Lee, Doi;Park, Soryeon;Seo, Dongju;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.901-912
    • /
    • 2022
  • The frequency of disasters is increasing due to global climate change, and unusual heavy rains and rainy seasons are occurring in Korea. Periodic monitoring and rapid detection are important because these weather conditions can lead to drought and flooding, causing secondary damage. Although research using optical images is continuously being conducted to determine the waterbody, there is a limitation in that it is difficult to detect due to the influence of clouds in order to detect floods that accompany heavy rain. Therefore, there is a need for research using synthetic aperture radar (SAR) that can be observed regardless of day or night in all weather. In this study, using Sentinel-1 SAR images that can be collected in near-real time as open data, the UNet model among deep learning algorithms that have recently been used in various fields was applied. In previous studies, waterbody detection studies using SAR images and deep learning algorithms are being conducted, but only a small number of studies have been conducted in Korea. In this study, to determine the applicability of deep learning of SAR images, UNet and the existing algorithm thresholding method were compared, and five indices and Sentinel-2 normalized difference water index (NDWI) were evaluated. As a result of evaluating the accuracy with intersect of union (IoU), it was confirmed that UNet has high accuracy with 0.894 for UNet and 0.699 for threshold method. Through this study, the applicability of deep learning-based SAR images was confirmed, and if high-resolution SAR images and deep learning algorithms are applied, it is expected that periodic and accurate waterbody change detection will be possible in Korea.

A Similarity Weight-based Method to Detect Damage Induced by a Tsunami

  • Jeon, Hyeong-Joo;Kim, Yong-Hyun;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.391-402
    • /
    • 2016
  • Among the various remote sensing sensors compared to the electro-optical sensors, SAR (Synthetic Aperture Radar) is very suitable for assessing damaged areas induced by disaster events owing to its all-weather day and night acquisition capability and sensitivity to geometric variables. The conventional CD (Change Detection) method that uses two-date data is typically used for mapping damage over extensive areas in a short time, but because data from only two dates are used, the information used in the conventional CD is limited. In this paper, we propose a novel CD method that is extended to use data consisting of two pre-disaster SAR data and one post-disaster SAR data. The proposed CD method detects changes by using a similarity weight image derived from the neighborhood information of a pixel in the data from the three dates. We conducted an experiment using three single polarization ALOS PALSAR (Advanced Land Observing Satellite/Phased Array Type L-Band) data collected over Miyagi, Japan which was seriously damaged by the 2011 east Japan tsunami. The results demonstrated that the mapping accuracy for damaged areas can be improved by about 26% with an increase of the g-mean compared to the conventional CD method. These improved results prove the performance of our proposed CD method and show that the proposed CD method is more suitable than the conventional CD method for detecting damaged areas induced by disaster.

Ship Detection Based on KOMPSAT-5 SLC Image and AIS Data (KOMPSAT-5 SLC 영상과 AIS 데이터에 기반한 선박탐지)

  • Kim, Donghan;Lee, Yoon-Kyung;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.365-377
    • /
    • 2020
  • Continuous monitoring and immediate response is essential to protect the national maritime territory and maritime resources from the activities of illegal ships. Synthetic Aperture Radar (SAR) images with a wide range of images are effective for maritime surveillance asthe weather and day-night conditions rarely affect to image acquisition. However, an effective ship detection is not easy due to the huge data size of SAR images and various characteristics such as the speckle noise. In this study, the Human Visual Attention System (HVAS) algorithm was applied to KOMPSAT-5 to extract the initial targets, and the SAR-Split algorithm depending on the imaging modes was used to remove false alarms. The detected targets were finally selected by the Constant False Alarm Rate (CFAR) algorithm and matched with the ship's Automatic Identification System (AIS) information. Overall, the detected targets were well matched with AIS data, but some false alarms by ship wakes were observed. The detection rate was about 80% in ES mode and about 64% in ST mode. It is expected that the developed ship detection algorithm will contribute to the construction of a wide area maritime surveillance network.

Performance Characteristics of the High Resolution, X-band Small Stellite SAR System Design (X 밴드 고해상도 소형 위성탑재 SAR 체계설계와 성능특징)

  • 곽영길
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.7
    • /
    • pp.1258-1270
    • /
    • 2000
  • A synthetic aperture radar (SAR) system is able to provide all-weather, day-and-night, high resolution imaging capability in the wide area of interest, and thus is extremely useful in surveillance for both civil and military applications. In this paper, the X-band high-resolution spaceborne SAR system design is described with the key design parameters for the mission and system requirement characterized by the small satellite platform. The SAR imaging mode design technique is presented, and the standard imaging mode design results are analyzed with respect to image quality performance. In line with the system requirement, X-band SAR payload and ground reception/processing subsystems are designed and the key design results are demonstrated with the outstanding performance characteristics. The designed small satellite SAR system shows the wide range of imaging capability, and proves to be an effective surveillance systems in the light weight, high performance and cost-effective points of view.

  • PDF

Night Time Leading Vehicle Detection Using Statistical Feature Based SVM (통계적 특징 기반 SVM을 이용한 야간 전방 차량 검출 기법)

  • Joung, Jung-Eun;Kim, Hyun-Koo;Park, Ju-Hyun;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.4
    • /
    • pp.163-172
    • /
    • 2012
  • A driver assistance system is critical to improve a convenience and stability of vehicle driving. Several systems have been already commercialized such as adaptive cruise control system and forward collision warning system. Efficient vehicle detection is very important to improve such driver assistance systems. Most existing vehicle detection systems are based on a radar system, which measures distance between a host and leading (or oncoming) vehicles under various weather conditions. However, it requires high deployment cost and complexity overload when there are many vehicles. A camera based vehicle detection technique is also good alternative method because of low cost and simple implementation. In general, night time vehicle detection is more complicated than day time vehicle detection, because it is much more difficult to distinguish the vehicle's features such as outline and color under the dim environment. This paper proposes a method to detect vehicles at night time using analysis of a captured color space with reduction of reflection and other light sources in images. Four colors spaces, namely RGB, YCbCr, normalized RGB and Ruta-RGB, are compared each other and evaluated. A suboptimal threshold value is determined by Otsu algorithm and applied to extract candidates of taillights of leading vehicles. Statistical features such as mean, variance, skewness, kurtosis, and entropy are extracted from the candidate regions and used as feature vector for SVM(Support Vector Machine) classifier. According to our simulation results, the proposed statistical feature based SVM provides relatively high performances of leading vehicle detection with various distances in variable nighttime environments.

Ship Detection by Satellite Data: Radiometric and Geometric Calibrations of RADARS AT Data (위성 데이터에 의한 선박 탐지: RADARSAT의 대기보정과 기하보정)

  • Yang, Chan-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.1 s.20
    • /
    • pp.1-7
    • /
    • 2004
  • RADARSAT is one of many possible data sources that can play an important role in marine surveillance including ship detection because radar sensors have the two primary advantages: all-weather and day or night imaging. However, atmospheric effects on SAR imaging can not be bypassed and any remote sensing image has various geometric distortions, In this study, radiometric and geometric calibrations for RADARSAT/SAT data are tried using SGX products georeferenced as level 1. Even comparison of the near vs. far range sections of the same images requires such calibration Radiometric calibration is performed by compensating for effects of local illuminated area and incidence angle on the local backscatter, Conversion method of the pixel DNs to beta nought and sigma nought is also investigated. Finally, automatic geometric calibration based on the 4 pixels from the header file is compared to a marine chart. The errors for latitude and longitude directions are 300m and 260m, respectively. It can be concluded that the error extent is acceptable for an application to open sea and can be calibrated using a ground control point.

  • PDF

Retrieval of Damaged Weather Radar Data using Image Morphology Technique (영상 모폴로지 기법을 활용한 손상된 기상레이더자료 보정 기법)

  • Jang, Kong-Joo;Kim, Hyunjung;Lim, Sanghun;Lee, Keon-Haeng;Hyun, Myung-Suk;Lee, Dong-Ryul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.19-19
    • /
    • 2016
  • 오늘날, 보다 정밀한 대기기상 분석과 정확한 기상 예측을 위해 보편적으로 기상레이더를 활용하고 있다. 지표면과 가까운 저층에서 주로 발생하는 국지성 호우 및 돌발기상에 대한 대응을 위해서는 기상레이더 역시 저층 관측이 수반되어야 한다. 하지만, 국토 대부분이 산악지형으로 이루어진 우리나라에서는 산악지형에 의한 지형클러터와 빔 차폐의 영향을 피하여 원만한 기상관측을 위해 대부분의 기상레이더가 고지대에 설치, 운영되고 있다. 그럼에도 불구하고 낮은 고도각의 레이더 관측 자료에서는 여전히 지형 클러터 및 차폐에 따른 영향으로 인해 자료 품질의 신뢰성이 떨어질 수 밖에 없다. 현재 클러터나 차폐가 발생한 영역에 대해 상위 고도각의 자료를 이용하는 등의 방법으로 보정을 수행하고 있지만 각 고도각 관측 자료들의 시간적 차이가 발생함에 따라 부정확성이 발생할 수 있다는 단점이 있다. 따라서 본 논문에서는 차폐 영역 보정에 대한 처리를 위해 단일 관측자료 만을 이용하는 방법을 적용함으로서 시간적 불일치성에 대한 문제를 해결하고, 초단기 강수예측을 위한 강수에코의 정확한 추적을 위해 레이더 영상에 적응적인 차폐, 클러터 보정 기법을 제안한다. 제안 기법은 강수에코의 형태학적 구조에 기반한 차폐보정을 위해 영상 처리 기법의 한 종류인 모폴로지 기법을 적용함으로써 강수에코의 모양, 크기, 및 구조에 따라 침식 및 팽창 과정을 수행하여 클러터나 차폐로 인해 소실된 강수에코 영역을 보정한다. 실험결과 레이더 강수추정의 정확성 향상을 꾀할 수 있었으며, 강수 추적을 위한 강수에코의 형태학적 복원이 가능함을 확인하였다. 이로부터, 향후 저층관측 레이더 자료의 활용성 증대와 에코 형태에 기반한 강수 추적 알고리즘 개발 및 성능 향상에 활용될 수 있을 것으로 기대한다.

  • PDF

KOMPSAT Imagery Application Status (다목적실용위성 영상자료 활용 현황)

  • Lee, Kwangjae;Kim, Younsoo;Chae, Taebyeong
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1311-1317
    • /
    • 2018
  • The ultimate goal of satellite development is to use information obtained from satellites. Therefore, national-levelsatellite development program should include not only hardware development, but also infrastructure establishment and application technology development for information utilization. Until now, Korea has developed various satellites and has been very useful in weather and maritime surveillance as well as various disasters. In particular, KOMPSAT (Korea Multi-purpose Satellite) images have been used extensively in agriculture, forestry and marine fields based on high spatial resolution, and has been widely used in research related to precision mapping and change detection. This special issue aims to introduce a variety of recent studies conducted using KOMPSAT optical and SAR (Synthetic Aperture Radar) images and to disseminate related satellite image application technologies to the public sector.

Improvement and Validation of Convective Rainfall Rate Retrieved from Visible and Infrared Image Bands of the COMS Satellite (COMS 위성의 가시 및 적외 영상 채널로부터 복원된 대류운의 강우강도 향상과 검증)

  • Moon, Yun Seob;Lee, Kangyeol
    • Journal of the Korean earth science society
    • /
    • v.37 no.7
    • /
    • pp.420-433
    • /
    • 2016
  • The purpose of this study is to improve the calibration matrixes of 2-D and 3-D convective rainfall rates (CRR) using the brightness temperature of the infrared $10.8{\mu}m$ channel (IR), the difference of brightness temperatures between infrared $10.8{\mu}m$ and vapor $6.7{\mu}m$ channels (IR-WV), and the normalized reflectance of the visible channel (VIS) from the COMS satellite and rainfall rate from the weather radar for the period of 75 rainy days from April 22, 2011 to October 22, 2011 in Korea. Especially, the rainfall rate data of the weather radar are used to validate the new 2-D and 3-DCRR calibration matrixes suitable for the Korean peninsula for the period of 24 rainy days in 2011. The 2D and 3D calibration matrixes provide the basic and maximum CRR values ($mm\;h^{-1}$) by multiplying the rain probability matrix, which is calculated by using the number of rainy and no-rainy pixels with associated 2-D (IR, IR-WV) and 3-D (IR, IR-WV, VIS) matrixes, by the mean and maximum rainfall rate matrixes, respectively, which is calculated by dividing the accumulated rainfall rate by the number of rainy pixels and by the product of the maximum rain rate for the calibration period by the number of rain occurrences. Finally, new 2-D and 3-D CRR calibration matrixes are obtained experimentally from the regression analysis of both basic and maximum rainfall rate matrixes. As a result, an area of rainfall rate more than 10 mm/h is magnified in the new ones as well as CRR is shown in lower class ranges in matrixes between IR brightness temperature and IR-WV brightness temperature difference than the existing ones. Accuracy and categorical statistics are computed for the data of CRR events occurred during the given period. The mean error (ME), mean absolute error (MAE), and root mean squire error (RMSE) in new 2-D and 3-D CRR calibrations led to smaller than in the existing ones, where false alarm ratio had decreased, probability of detection had increased a bit, and critical success index scores had improved. To take into account the strong rainfall rate in the weather events such as thunderstorms and typhoon, a moisture correction factor is corrected. This factor is defined as the product of the total precipitable waterby the relative humidity (PW RH), a mean value between surface and 500 hPa level, obtained from a numerical model or the COMS retrieval data. In this study, when the IR cloud top brightness temperature is lower than 210 K and the relative humidity is greater than 40%, the moisture correction factor is empirically scaled from 1.0 to 2.0 basing on PW RH values. Consequently, in applying to this factor in new 2D and 2D CRR calibrations, the ME, MAE, and RMSE are smaller than the new ones.

Evaluation of Reservoir Monitoring-based Hydrological Drought Index Using Sentinel-1 SAR Waterbody Detection Technique (Sentinel-1 SAR 영상의 수체 탐지 기법을 활용한 저수지 관측 기반 수문학적 가뭄 지수 평가)

  • Kim, Wanyub;Jeong, Jaehwan;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.2
    • /
    • pp.153-166
    • /
    • 2022
  • Waterstorage is one of the factorsthat most directly represent the amount of available water resources. Since the effects of drought can be more intuitively expressed, it is also used in variousstudies for drought evaluation. In a recent study, hydrological drought was evaluated through information on observing reservoirs with optical images. The short observation cycle and diversity of optical satellites provide a lot of data. However, there are some limitations because it is vulnerable to the influence of weather or the atmospheric environment. Therefore, thisstudy attempted to conduct a study on estimating the drought index using Synthetic Aperture Radar (SAR) image with relatively little influence from the observation environment. We produced the waterbody of Baekgok and Chopyeong reservoirs using SAR images of Sentinel-1 satellites and calculated the Reservoir Area Drought Index (RADI), a hydrological drought index. In order to validate the applicability of RADI to drought monitoring, it was compared with Reservoir Storage Drought Index (RSDI) based on measured storage. The two indices showed a very high correlation with the correlation coefficient, r=0.87, Area Under curve, AUC=0.97. These results show the possibility of regional-scale hydrological drought monitoring of SAR-based RADI. As the number of available SAR images increases in the future, it is expected that the utilization of drought monitoring will also increase.