태양광 발전은 기상 상태에 따라 간헐적이기 때문에 태양광 발전의 효율과 경제성 향상을 위해 정확한 발전량 예측이 요구된다. 본 연구는 목포 기상대에서 예보하는 기상 데이터와 영암 태양광 발전소의 발전량 데이터를 이용하여 태양광 발전량 단기 딥러닝 예측모델을 제안하였다. 기상청은 기온, 강수량, 풍향, 풍속, 습도, 운량 등의 기상요소를 3일간 예보한다. 그러나 태양광 발전량 예측에 가장 중요한 기상요소인 일조 및 일사 일사량 예보하지 않는다. 제안 모델은 예보 기상요소를 이용하여, 일조 및 일사 일사량을 예측 하였다. 또한 발전량은 기상요소에 예측된 일조 및 일사 기상요소를 추가하여 예측하였다. 제안 모델의 발전량 예측 결과 DNN의 평균 RMSE와 MAE는 0.177과 0.095이며, RNN은 0.116과 0.067이다. 또한, LSTM은 가장 좋은 결과인 0.100과 0.054이다. 향후 본 연구는 다양한 입력요소의 결합으로 보다 향상된 예측결과를 도출할 수 있을 것으로 기대된다.
Park, Sung-Won;Son, Sung-Yong;Kim, Changseob;LEE, Kwang Y.;Hwang, Hye-Mi
Journal of Electrical Engineering and Technology
/
제13권5호
/
pp.1874-1885
/
2018
The customer side operation is getting more complex in a smart grid environment because of the adoption of renewable resources. In performing energy management planning or scheduling, it is essential to forecast non-controllable resources accurately and robustly. The PV system is one of the common renewable energy resources in customer side. Its output depends on weather and physical characteristics of the PV system. Thus, weather information is essential to predict the amount of PV system output. However, weather forecast usually does not include enough solar irradiation information. In this study, a PV system power output prediction model (PPM) under limited weather information is proposed. In the proposed model, meteorological radiation model (MRM) is used to improve cloud cover radiation model (CRM) to consider the seasonal effect of the target region. The results of the proposed model are compared to the result of the conventional CRM prediction method on the PV generation obtained from a field test site. With the PPM, root mean square error (RMSE), and mean absolute error (MAE) are improved by 23.43% and 33.76%, respectively, compared to CRM for all days; while in clear days, they are improved by 53.36% and 62.90%, respectively.
태양광 발전소의 발전량은 기상 조건, 지리적 조건, 태양광 패널 설치 조건과 높은 상관관계를 갖는다. 과거 연구들에서는 발전량에 영향을 미치는 요소를 찾아내었고, 그 중 일부는 태양광 패널이 최대 전력량을 생산할 수 있는 최적의 조건을 찾았었다. 하지만, 태양광발전소 설치 시 현실적 제약을 고려하면 최대 발전량 조건을 만족시키기는 매우 어렵다. 발전소 소유자가 태양광발전소 설치를 검토할 때 태양광 발전량을 예측하기 위해서는 발전량에 영향을 미치는 요인들의 민감도를 알아야 한다. 본 논문에서는 태양광발전소의 발전량과 날씨, 위치, 설치 조건 등 관련 요인들과의 관계를 분석하기 위한 다항회귀분석 방법을 제안한다. 분석자료는 대구, 경북에 설치·운영되는 태양광발전소 11개소로부터 수집하였다. 분석 결과 발전량은 패널 종류, 일사량, 음영 유무에 영향을 받으며 패널 설치 각도와 방향이 복합적인 영향을 주는 것으로 나타났다.
일반적으로 해양 시설물은 대부분 태양광 기반의 발전 시스템으로 구성된다. 태양광 발전 시스템은 날씨의 광량에 따라 변화한다. 태양광 발전 시스템은 흐린 날과 비오는 날에 전력 생산량이 감소한다. 태양광 발전량이 부족해지면 해양 시설물에 전력 부족이 발생한다. 이러한 문제를 해결하기 위하여 본 논문은 태양광과 파력 시스템을 복합한 하이브리드 발전 제어 시스템을 제안한다. 파력 발전 시스템은 웰스 터빈과 영구자석 발전기로 구성되어 있다. 제안하는 시스템을 특별한 지역에 설치하고 태양광 발전 전력과 파력 발전 전력을 측정하였다. 실험결과 태양광 전력은 파력에 비하여 안정적인 전원이다. 그러나 파력은 태양이 없는 동안에도 전력을 공급할 수 있다. 제안하는 하이브리드 시스템의 전력 특성이 태양광 시스템에 비하여 높은 안정성을 갖는 것을 알 수 있다.
Building simulation is used in a variety of sectors. In its early years, building simulation was mainly used in the design phase of a building for basic functions. Recently, however, it has become increasingly important during the operating phase, for commissioning and facility management. Most building simulation tools are used to estimate the thermal environment and energy consumption performance, and hence, they require the inputting of hourly weather data. A building simulation used for prediction should take into account the use of standard weather data. Weather data, which is used as input for a building simulation, plays a crucial role in the prediction performance, and hence, the selection of appropriate weather data is considered highly important. The present study proposed a technique for generating real-time weather data files, as opposed to the standard weather data files, which are required for running the building simulation. The forecasted weather elements provided by the Korea Meteorological Administration (KMA), the elements produced by the calculations, those utilizing the built-in functions of Energy Plus, and those that use standard values are combined for hourly input. The real-time weather data files generated using the technique proposed in the present study have been validated to compare with measured data and simulated data via EnergyPlus. The results of the present study are expected to increase the prediction accuracy of building control simulation results in the future.
The global patterns of annual and extreme precipitation are projected to be altered by climate change. There are various weather systems which bring precipitation (e.g. tropical cyclone, extratropical cyclone, etc.). It is possible in some regions that multiple weather systems affect the changes of precipitation. However, previous studies have assessed only the changes of precipitation associated with individual weather systems. The relative contributions of the weather systems to the changes of precipitation have not been quantified yet. Also, the changes of the relative importance of weather systems have not been assessed. This study present the quantitative estimates of 1) the relative contributions of weather systems (tropical cyclone (TC), extratropical cyclone (ExC), and "others") to the future changes of annual and extreme precipitation and 2) the changes of the proportions of precipitation associated with each weather system in annual and extreme precipitation based on CMIP5 generation GCM outputs. Weather systems are objectively detected from twelve GCM outputs and six models are selected for further analysis considering the reproducibility of weather systems. In general, the weather system which is dominant in terms of producing precipitation in the present climate contributes the most to the changes of annual and extreme precipitation in each region. However, there are exceptions for the tendency. In East Asia, "others", which ranks the second in the proportion of annual precipitation in present climate, has the largest contribution to the increase of annual precipitation. It was found that the increase of the "others" annual precipitation in East Asia is mainly explained by the changes of that in summer season (JJA), most of which can be regarded as the summer monsoon precipitation. In Southeast Asia, "others" precipitation, the second dominant system in the present climate, has the largest contribution to the changes of very heavy precipitation (>99.9 percentile daily precipitation of historical period). Notable changes of the proportions of precipitation associated with each weather system are found mainly in subtropics, which can be regarded as the "hotspot" of the precipitation regime shift.
The purpose of this study for photovoltaic (PV) generation system is to keep the output power of photovoltaic cells maximized under any weather conditions. In a conventional MPPT (Maximum Power Point Tracking) control method, both voltage and current coming out from PV array have to be fedback. Thus, the system has a complex structure, and may fail to track MPP of PV array when unexpected weather conditions happen. This paper proposes a novel PV Output Senseless (POS) control method to solve the mentioned problem. The main advantage of this method is that the current flowing into load is the only one considerable factor. In case of a huge PV generation system, it can be operated much more safely than the conventional system. To verify this theory, results that compare and analyze the simulated data with experimental data under real weather condition of the manufactured PV generation system are shown in this paper. Authors vividly states that this theory uses constant resistors and variable resistors of DC-DC converter in PV system. Authors emphasize that it is a very useful method to maximize power from PV cells to load with only the feedback of load current. Authors also emphasize that this theory is applicable in case of the PCS in PV power generation system.
태양광발전은 독립전원으로써의 가치는 미미하나 도시전체의 탄소발생량 저감 및 화석연료 사용 저감을 위한 분산전원으로써 가치가 매우 높은 전력원이다. 하지만 태양광발전의 경우 기상조건에 따른 발전량 변동이 심하기에 분산전원으로써 효율적으로 사용하기 위해서는 큰 변동폭을 효과적으로 제어하기 위한 실시간 모니터링이 이루어져야 한다. 하지만 태양광발전량을 좌우하는 일사량은 예측치가 존재하지 않기에 이를 예측해야 하고 본 연구에서는 과거의 일사량을 직산분리 하여 구름의 짙은 정도나 두께 등을 유추할 수 있는 대기투과율을 일기예보에서 발표하는 날씨별로 대푯값을 산정하고 이를 일사량 예측식에 대입하여 일사량을 예측하였다. 그리고 실측 일사량 및 CRM(Cloud Cover Radiation Model)기법인 Kasten and Czeplak의 식을 통해 계산된 예측일사량과의 비교를 통해 검증하였다.
일기 산출기 모형은 가상의 일기 자료를 생성하는 통계 모형이다. 본 연구는 시공간 상관성이 고려된 다중지점에서의 일기산출 모형을 제안하고, 온실가스 배출 미래 시나리오에 따라 강수량과 평균 기온 일기산출이 가능한 알고리즘을 개발하였다. 제안된 알고리즘은 다단계 일반화 선형모형 하에서 필요한 모수들을 추정하고, 적합된 모형 하에서 일기변수들을 랜덤하게 산출하는 절차이다. 과거 30년간 관측된 우리나라 4대강 유역의 일 강수량 자료와 평균 기온 자료를 가지고 모형을 적합하고, 미래 일별 일기자료 산출에 적용하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.