2016년 2월 5일, 짐바브웨는 극심한 가뭄으로 인해 인구의 4분의 1이상이 식량난을 겪고 있다며 '국가 재난 사태'를 선포하였다. 한때 아프리카 곡창지대로 불리던 짐바브웨가 극심한 가뭄을 겪게 된 데에는 2015/16년 슈퍼엘니뇨의 영향이 크게 한 몫을 하였는데, 이는 남반구의 여름인 11월부터 이듬해 3월까지인 짐바브웨의 우기가 2015/16년 슈퍼엘니뇨 강도가 절정에 달했던 시기(10월에서 2월)와 겹쳐져 짐바브웨의 강수량이 슈퍼 엘니뇨의 영향을 받게 되었기 때문이다. 게다가 4월부터는 엘니뇨의 영향을 받은 우기가 끝나고 건기가 시작되기 때문에 앞으로 가뭄이 얼마나 더 악화될지 우려되는 상황이다. 짐바브웨의 기후를 살펴보면, 증발량이 강수량보다 많은 건조기후 중에서도 비교적 그 정도가 약한 기후인 반건조 지대에 속한다. 하지만 연강수량 변동에 따라서, 비가 내리는 해에는 토양 수분이 과잉되고 비가 적게 내리는 해에는 심한 물 부족 현상이 일어나게 되기 때문에, 건기가 시작되는 4월부터 짐바브웨 강수 예측은 가뭄이 얼마나 지속될지를 파악하는 데에 아주 중요한 요소가 될 수 있다. 따라서 본 연구에서는 강수 예측 결과를 중심으로 2016년 짐바브웨의 가뭄이 얼마나 지속되고, 또 가뭄의 강도는 어떻게 될지 알아보는 것에 목적을 두고, GCM을 이용하여 2016년 3월에서 10월까지 장기예측을 수행하였다. 경계 자료로는 ECMWF (European Centre for Medium Range Weather Forecasts)에서 제공하는 Sea Ice자료와, NOAA OI (National Oceanic and Atmospheric Administration Optimum Interpolation) Weekly SST자료를 사용하였고 엘니뇨의 영향을 고려하기 위해 IRI (International Research Institute)의 ENSO forecast를 참고하여 SST아노말리에 월별 가중치를 적용하였다. 초기 입력 자료로는 1월 21-30일 10일간의 ECMWF의 재분석 자료를 이용하여 총 10개 멤버의 앙상블 예측을 수행하였고, 8개월(3-10월) 기간에 대해 약 한 달간의 spin-up time을 주었다. 예측 자료를 모델 climatology와 비교하여 월 평균 강수 전망을 분석하였고, 기온과 해면기압의 월 평균자료도 추가 분석하였다. 또한 짐바브웨 지역의 강수 관측 자료와 모델 예측 자료를 이용하여 특정 도시들의 1년 누적강수를 예측 및 분석하였고, 최종적으로 이 결과를 통해 짐바브웨의 가뭄지속가능성을 살펴보았다.
The global weather prediction model, Korean Integrated Model (KIM), has been in operation since April 2020 by the Korea Meteorological Administration. This study assessed the performance of heat waves (HWs) in Korea in 2020. Case experiments during 2018-2020 were conducted to support the reliability of assessment, and the factors which affect predictability of the HWs were analyzed. Simulated expansion and retreat of the Tibetan High and North Pacific High during the 2020 HW had a good agreement with the analysis. However, the model showed significant cold biases in the maximum surface temperature. It was found that the temperature bias was highly related to underestimation of downward shortwave radiation at surface, which was linked to cloudiness. KIM tended to overestimate nighttime clouds that delayed the dissipation of cloud in the morning, which affected the shortage of downward solar radiation. The vertical profiles of temperature and moisture showed that cold bias and trapped moisture in the lower atmosphere produce favorable conditions for cloud formation over the Yellow Sea, which affected overestimation of cloud in downwind land. Sensitivity test was performed to reduce model bias, which was done by modulating moisture mixing parameter in the boundary layer scheme. Results indicated that the daytime temperature errors were reduced by increase in surface solar irradiance with enhanced cloud dissipation. This study suggested that not only the synoptic features but also the accuracy of low-level temperature and moisture condition played an important role in predicting the maximum temperature during the HWs in medium-range forecasts.
The objective of this study was to develop a model for predicting long-term runoff in a basin using the ensemble streamflow prediction (ESP) technique and review its reliability. To achieve the objective, this study improved not only the ESP technique based on the ensemble scenario analysis of historical rainfall data but also conventional ESP techniques used in conjunction with qualitative climate forecasting information, and analyzed and assessed their improvement effects. The model was applied to the Geum River basin. To undertake runoff forecasting, this study tried three cases (case 1: Climate Outlook + ESP, case 2: ESP probability through monthly measured discharge, case 3: Season ESP probability of case 2) according to techniques used to calculate ESP probabilities. As a result, the mean absolute error of runoff forecasts for case 1 proposed by this study was calculated as 295.8 MCM. This suggests that case 1 showed higher reliability in runoff forecasting than case 2 (324 MCM) and case 3 (473.1 MCM). In a discrepancy-ratio accuracy analysis, the Climate Outlook + ESP technique displayed 50.0%. This suggests that runoff forecasting using the Climate Outlook +ESP technique with the lowest absolute error was more reliable than other two cases.
This study investigated the prediction skill of the Asian dust seasonal forecasting model (GloSea5-ADAM) on the Asian dust and meteorological variables related to the dust generation for the period of 1991~2016. Additionally, we evaluated the prediction skill of those variables depending on the combination of the initial dates in the sub-seasonal scale for the dust source region affecting South Korea. The Asian dust and meteorological variables (10 m wind speed, 1.5 m relative humidity, and 1.5 m air temperature) from GloSea5-ADAM were compared to that from Synoptic observation and European Centre for medium range weather forecasts reanalysis v5, respectively, based on Mean Bias Error (MBE), Root Mean Square Error (RMSE), and Anomaly Correlation Coefficient (ACC) as evaluation criteria. In general, the Asian dust and meteorological variables in the source region showed high ACC in the prediction scale within one month. For all variables, the use of the initial dates closest to the prediction month led to the best performances based on MBE, RMSE, and ACC, and the performances could be improved by adjusting the number of ensembles considering the combination of the initial date. ACC was as high as 0.4 in Spring when using the closest two initial dates. In particular, the GloSea5-ADAM shows the best performance of Asian dust generation with an ACC of 0.60 in the occurrence frequency of Asian dust in March when using the closest initial dates for initial conditions.
하드웨어 기술이 발달하고 수치 모델 방식이 고도화됨에 따라 더욱 정밀한 기상예보를 진행할 수 있게 되었다. 본 논문에서는 CESM의 간소화 버전인 SCAM에 포함된 적운모수화 코드 (Unicon, Fortran)를 최적화하고 유지보수성을 증가시키기 위해 Loop Vectorization, Dependency Vectorization, Code Modernization 3가지가 결합한 Unicon Optimization 기법을 제안하고 이를 테스트 하기 위하여 SCAM 전체 실행 구조도를 제시하였다. 본 논문에서는 구축한 SCAM 실행 환경에서 논문에서 제안한 Unicon Optimization 기법을 테스트 하였고 기존 소스 코드 대비 Loop Vectorization은 3.086% Dependency Vectorization은 0.4572% 성능 향상을 이끌어 냈다. 그리고 이를 모두 적용한 Unicon Optimization의 경우 기존 소스 코드 대비 3.457%의 성능 향상을 이끌어 냈다. 이는 본 논문에서 제안한 Unicon Optimization 기법이 우수한 성능을 제공하고 있음을 입증한다.
4차산업 혁명이 도래한 이후로 전세계적으로 AI 기술이 유래 없는 속도로 발달 및 활용되고 있으며, 다양한 분야에서 AI 기법을 도입한 연구가 활발히 진행 중에 있다. 최근 수자원 분야에서는 단기 강우 예측, 댐 유입량 예측 및 하천 수위 예측 등의 분야에서 AI 기술이 접목되어 꾸준한 기술 개발이 이루어지고 있다. 그러나 단변량으로 축척된 자료를 활용하여 중·장기 모형 개발 연구가 다수 진행되고 있지만, 급격한 기후변화 현상과 복잡한 매커니즘을 보이고 있는 기상현상의 경우 단변량 분석으로서는 정확도가 저하 될 수 있는 우려가 있는 것이 현실이다. 이에 본 연구에서는 상기에 제시된 단점을 극복하고자 다양한 기상자료를 검증·예측인자로 활용함과 동시에 Deeplearning 모형과 결합하여 신뢰성 있는 단기 강수 예측이 가능한 모형을 개발하였다. 본 연구에서는 유럽중기예보센터(ECMWF, European Center for Medium-Range Weather Forecasts)에서 제공하고 있는 ERA5 재해석 자료를 활용하였으며, Deeplearning 모형과 결합하여 단기 강우 예측이 가능한 모형을 개발하였다. 1차적으로 격자자료(25km×25km)로 제공되고 있는 ERA5 자료를 상세화(downscaling) 모형에 적용하여 기상청 관측소와 비교·검증하였으며, Deeplearning 모형을 통해 단기 예측이 가능한 모형으로 확장하였다. 이때 Deeplearning의 다양한 모형 중 시계열 분석에 있어 예측 성능이 높은 LSTM 모형을 활용하였으며, 제공되고 있는 대기 변수의 상호관계를 노드간 연결을 통해 결과의 정확도와 신뢰성을 확보하였다. 본 연구 결과는 기관별로 제공하고 있는 예측 수준을 상회하는 결과를 도출하였으며, 홍수기에 집중되는 강우량을 예측하여 대비·대책을 선제적으로 마련할 수 있는 자료로써의 활용성이 높을 것으로 사료된다.
This study investigates the physical mechanisms that contributed to the 2022 European record-breaking heatwave throughout May-August (MJJA). The European climate has experienced surface warming and drying in the recent decade (1979~2022) which influences the development of the 2022 European heatwave. Since its spatial pattern resembles the 2003 European heatwave which is a well-known case developed by the strong coupling of near-surface conditions to land surface processes, the 2022 heatwave is compared with the 2003 case. Understanding heatwave development is carried out by the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis version 5 (ERA5) and daily maximum surface temperature released by NCEP (National Centers for Environmental Prediction) CPC (Climate Prediction Center). The results suggest that the persistent high pressure along with clear sky tends to increase the downward shortwave radiation which leads to enhanced sensible heat flux with the land surface dryness. Terrestrial Coupling Index (TCI), a process-based multivariate metric, is employed to quantitatively measure segmented feedback processes, separately for the land, atmosphere, and two-legged couplings, which appears to the development of the 2022 heatwave, can be viewed as an expression of the recent trends, amplified by internal land-atmosphere interactions.
The Korean Integrated Model (KIM) forecast system was extended to assimilate Horizontal Line-Of-Sight (HLOS) wind observations from the Atmospheric Laser Doppler Instrument (ALADIN) on board the Atmospheric Dynamic Mission (ADM)-Aeolus satellite. Quality control procedures were developed to assess the HLOS wind data quality, and observation operators added to the KIM three-dimensional variational data assimilation system to support the new observed variables. In a global cycling experiment, assimilation of ALADIN observations led to reductions in average root-mean-square error of 2.1% and 1.3% for the zonal and meridional wind analyses when compared against European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) analyses. Even though the observable variable is wind, the assimilation of ALADIN observation had an overall positive impact on the analyses of other variables, such as temperature and specific humidity. As a result, the KIM 72-hour wind forecast fields were improved in the Southern Hemisphere poleward of 30 degrees.
풍랑특보는 우리나라 부근을 항행하는 선박 및 해상 업무 종사자에게 큰 영향을 미친다. 이 연구에서는 최근 11년(2010-2020년) 동안 기상청에서 발표한 서해·남해·동해의 앞바다 및 먼바다의 풍랑특보와 주요 해양기상부이의 관측자료를 비교·분석하여 풍랑특보의 적절성을 평가하였다. 각 해역에 대한 풍랑특보와 해양기상부이 관측자료를 일별, 월별, 연별로 통계를 내어 연평균, 월평균, 계절별로 비교한 결과, 풍랑특보의 적중률이 전 해역에 걸쳐 매우 낮았으며, 특히 남해 앞바다와 제주도 앞바다의 적중률은 겨울에 가장 낮은 것으로 분석되었다. 해상에서의 풍랑특보가 어선의 어업활동, 여객선 운항 및 관광, 해상 레저활동 등에 미치는 영향을 고려할 때 해양기상 예·특보의 정확성을 개선할 필요가 있음을 확인하였다.
초미세먼지, 특히 지름이 2.5㎛ 이하인 PM2.5는 인체 건강과 경제에 큰 피해를 주는 오염물질이다. 본 연구는 대한민국 서울 지역을 중심으로, 2017년부터 2022년까지 자료를 수집하여 PM2.5 데이터 분석 및 데이터 경향성 변화 추이를 분석하고, PM2.5 중기 예측 모델을 개발하는 것을 목표로 한다. 수집, 생산된 대기질 및 기상 데이터, 재분석 데이터, 수치모델 예측 데이터를 바탕으로, 모델을 학습하고 이를 통합한 경향성 변화에도 대응할 수 있는 앙상블 기법을 제안한다. 본 연구에서 제안하는 앙상블 기법은 PM2.5 농도 예측 성능 면에서 기존 모델 대비 미래 D+3~D+6 예측일 F1 Score 기준 평균 2019년 약 42.16%, 2021년 약 58.92%, 2022년 약 34.79% 높은 성능을 보였다. 제안한 모델은 변화하는 환경 조건에도 성능을 유지함으로써 안정적인 예측을 가능하게 하며, 기존 딥러닝 기반 PM2.5 단기 예측보다 먼 예측을 수행하는 중기 예측 모델을 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.