• Title/Summary/Keyword: Weather Sensor data

Search Result 152, Processing Time 0.033 seconds

Wireless LED Streetlight Platform with Weather Monitoring and Color Temperature Control System (기상 모니터링과 색 온도 제어 시스템을 지원하는 무선 LED 가로등 플랫폼 설계 및 구현)

  • Daely, Philip Tobianto;Bayu, Satrya Gandeva;Kim, Jin Woo;Jang, Yunseong;Kim, Dong-Pyo;Shin, Soo Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.5
    • /
    • pp.1038-1046
    • /
    • 2017
  • In this paper, we propose the design of LED Streetlight Platform with capabilities of weather monitoring and color temperature control. Several previous works are focused on the energy efficiency or data management of streetlight system, but no work has been done on the lighting performance, especially when natural phenomenon such as fog or haze appears on the street and obstructs the visibility of drivers and pedestrians. To solve such issue, we propose the use of two LED lamps with different correlated color temperature, which will be activated interchangeably according to the condition on the street. We also present the design of communication scheme between each devices in the system. Moreover, our experimental results show the LED Streetlight Platform can perform well and the data can be displayed properly at the website.

Analysis of a NEMO enabled PMIPv6 based Mobility Support for an Efficient Information Transmission

  • Caytiles, Ronnie D.;Park, Byungjoo
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.197-205
    • /
    • 2018
  • Nowadays, wireless sensor networks (WSNs) have been widely adopted in structural health monitoring (SHM) systems for social overhead capital (SOC) public infrastructures. Structural health information, environmental disturbances and sudden changes of weather conditions, damage detections, and external load quantizing are among the capabilities required of SHM systems. These information requires an efficient transmission with which an efficient mobility management support for wireless networks can provide. This paper deals with the analysis of mobility management schemes in order to address the real-time requirement of data traffic delivery for critical SHM information. The host-based and network-based mobility management protocols have been identified and the advantages of network mobility (NEMO) enabled Proxy Mobile Internet Protocol version 6 (PMIPv6) have been leveraged in order to address the SHM information transmission needs. The scheme allows an efficient information transmission as it improves the handover performance due to shortened handover latency as well as reduced signaling overhead.

A Study on the Bed Load Collision Sound Analysis Using Sound Sensor and Denoising Filter (음향센서와 디노이징 필터를 활용한 향상된 소류사 충돌음 분석 연구)

  • Kim, Sung Uk;Jun, Kye Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.2
    • /
    • pp.43-50
    • /
    • 2021
  • In Korea, the frequency of soil disasters has soared recently due to increased torrential rains caused by abnormal weather conditions. In particular, soil generated from mountainous areas is flowing into small rivers along valleys, depositing rivers and adding to flood damage. In order to prevent damage from such soil disasters, it is important to predict sediments and to quantitatively identify bed load. In this work, we conducted an experiment to indirectly measure acoustic sensor-based bed load collision sounds using pipe hydrophones, and compared them with raw data by applying denoising methods to improve the reliability of the measured data. As a result, we derive results in a more clear analysis of bed load estimation by correcting noise when the denoising method is applied to raw data.

Research for Calibration and Correction of Multi-Spectral Aerial Photographing System(PKNU 3) (다중분광 항공촬영 시스템(PKNU 3) 검정 및 보정에 관한 연구)

  • Lee, Eun Kyung;Choi, Chul Uong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.4
    • /
    • pp.143-154
    • /
    • 2004
  • The researchers, who seek geological and environmental information, depend on the remote sensing and aerial photographic datum from various commercial satellites and aircraft. However, the adverse weather conditions and the expensive equipment can restrict that the researcher can collect their data anywhere and any time. To allow for better flexibility, we have developed a compact, a multi-spectral automatic Aerial photographic system(PKNU 2). This system's Multi-spectral camera can catch the visible(RGB) and infrared(NIR) bands($3032{\times}2008$ pixels) image. Visible and infrared bands images were obtained from each camera respectively and produced Color-infrared composite images to be analyzed in the purpose of the environment monitor but that was not very good data. Moreover, it has a demerit that the stereoscopic overlap area is not satisfied with 60% due to the 12s storage time of each data, while it was possible that PKNU 2 system photographed photos of great capacity. Therefore, we have been developing the advanced PKNU 2(PKNU 3) that consists of color-infrared spectral camera can photograph the visible and near infrared bands data using one sensor at once, thermal infrared camera, two of 40 G computers to store images, and MPEG board to compress and transfer data to the computer at the real time and can attach and detach itself to a helicopter. Verification and calibration of each sensor(REDLAKE MS 4000, Raytheon IRPro) were conducted before we took the aerial photographs for obtaining more valuable data. Corrections for the spectral characteristics and radial lens distortions of sensor were carried out.

  • PDF

Contrast Enhancement Method using Color Components Analysis (컬러 성분 분석을 이용한 대비 개선 방법)

  • Park, Sang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.707-714
    • /
    • 2019
  • Recently, as the sensor network technologies and camera technologies develops, there are increasing needs by combining two technologies to effectively observe or monitor the areas that are difficult for people to access by using the visual sensor network. Since the applications using visual sensors take pictures of the outdoor areas, the images may not be well contrasted due to cloudy weather or low-light time periods such as a sunset. In this paper, we first model the color characteristics according to illumination using the characteristics of visual sensors that continuously capture the same area. Using this model, a new method for improving low contrast images in real time is proposed. In order to make the model, the regions of interest consisting of the same color are set up and the changes of color according to the brightness of images are measured. The gamma function is used to model color characteristics using the measured data. It is shown by experimental results that the proposed method improves the contrast of an image by adjusting the color components of the low contrast image simply and accurately.

Application of Very Short-Term Rainfall Forecasting to Urban Water Simulation using TREC Method (TREC기법을 이용한 초단기 레이더 강우예측의 도시유출 모의 적용)

  • Kim, Jong Pil;Yoon, Sun Kwon;Kim, Gwangseob;Moon, Young Il
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.5
    • /
    • pp.409-423
    • /
    • 2015
  • In this study the very short-term rainfall forecasting and storm water forecasting using the weather radar data were implemented in an urban stream basin. As forecasting time increasing, the very short-term rainfall forecasting results show that the correlation coefficient was decreased and the root mean square error was increased and then the forecasting model accuracy was decreased. However, as a result of the correlation coefficient up to 60-minute forecasting time is maintained 0.5 or higher was obtained. As a result of storm water forecasting in an urban area, the reduction in peak flow and outflow volume with increasing forecasting time occurs, the peak time was analyzed that relatively matched. In the application of storm water forecasting by radar rainfall forecast, the errors has occurred that we determined some of the external factors. In the future, we believed to be necessary to perform that the continuous algorithm improvement such as simulation of rapid generation and disappearance phenomenon by precipitation echo, the improvement of extreme rainfall forecasting in urban areas, and the rainfall-runoff model parameter optimizations. The results of this study, not only urban stream basin, but also we obtained the observed data, and expand the real-time flood alarm system over the ungaged basins. In addition, it is possible to take advantage of development of as multi-sensor based very short-term rainfall forecasting technology.

Automated Geometric Correction of Geostationary Weather Satellite Images (정지궤도 기상위성의 자동기하보정)

  • Kim, Hyun-Suk;Lee, Tae-Yoon;Hur, Dong-Seok;Rhee, Soo-Ahm;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.297-309
    • /
    • 2007
  • The first Korean geostationary weather satellite, Communications, Oceanography and Meteorology Satellite (COMS) will be launched in 2008. The ground station for COMS needs to perform geometric correction to improve accuracy of satellite image data and to broadcast geometrically corrected images to users within 30 minutes after image acquisition. For such a requirement, we developed automated and fast geometric correction techniques. For this, we generated control points automatically by matching images against coastline data and by applying a robust estimation called RANSAC. We used GSHHS (Global Self-consistent Hierarchical High-resolution Shoreline) shoreline database to construct 211 landmark chips. We detected clouds within the images and applied matching to cloud-free sub images. When matching visible channels, we selected sub images located in day-time. We tested the algorithm with GOES-9 images. Control points were generated by matching channel 1 and channel 2 images of GOES against the 211 landmark chips. The RANSAC correctly removed outliers from being selected as control points. The accuracy of sensor models established using the automated control points were in the range of $1{\sim}2$ pixels. Geometric correction was performed and the performance was visually inspected by projecting coastline onto the geometrically corrected images. The total processing time for matching, RANSAC and geometric correction was around 4 minutes.

Designing Bigdata Platform for Multi-Source Maritime Information

  • Junsang Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.111-119
    • /
    • 2024
  • In this paper, we propose a big data platform that can collect information from various sources collected at ocean. Currently operating ocean-related big data platforms are focused on storing and sharing created data, and each data provider is responsible for data collection and preprocessing. There are high costs and inefficiencies in collecting and integrating data in a marine environment using communication networks that are poor compared to those on land, making it difficult to implement related infrastructure. In particular, in fields that require real-time data collection and analysis, such as weather information, radar and sensor data, a number of issues must be considered compared to land-based systems, such as data security, characteristics of organizations and ships, and data collection costs, in addition to communication network issues. First, this paper defines these problems and presents solutions. In order to design a big data platform that reflects this, we first propose a data source, hierarchical MEC, and data flow structure, and then present an overall platform structure that integrates them all.

Comparative Study of GPS-Integrated Concrete Supply Management using Discrete Event Simulation

  • Zekavat, Payam Rahnamayie;Mortaheb, Mohammad Mehdi;Han, Sangwon;Bernold, Leonhard
    • Journal of Construction Engineering and Project Management
    • /
    • v.4 no.2
    • /
    • pp.31-40
    • /
    • 2014
  • The management of vehicular supply of "perishable" construction material, such as concrete mixes, faces a series of uncertainties such as weather, daily traffic patterns and accidents. Presented in this paper is a logistics control model for managing a hauling fleet with interrelated processes at both ends and queue capacities. Discrete event simulation is used to model the complex interactions of production units and the randomness of the real world. Two alternative strategies for ready mix concrete delivery, with and without an off-site waiting queue, are studied to compare supply performance. Secondly, the paper discusses the effect of an agent-based GPS tracking system providing real-time travel data that lessens the uncertainty of trucking time. The results show that the combination of GPS information with off-site queuing reduces productivity loss and process wastes of concrete placement as well as the idleness of supply trucks when crew or pump experience an unexpected stoppage.

Proposal of a Black Ice Detection Method Using Vehicle Sensors to Reduce Traffic Accidents (교통사고 경감을 위한 차량 센서를 사용한 블랙아이스 탐지 방법 제안)

  • Kim, Hyung-gyun;Kim, Du-hyun;Baek, Seung-hyun;Jang, Min-seok;Lee, Yonsik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.524-526
    • /
    • 2021
  • As the invention of automobiles and construction of roads for vehicles began, the occurrence of traffic accidents began to increase. Accordingly, efforts were made to prevent traffic accidents by changing the road construction method and using signal systems such as traffic lights, but until now, numerous human and property damages have occurred every year due to traffic accidents caused by freezing of the road due to bad weather. In this paper, we propose a method of transmitting ice detection data detected using vehicle sensor data to vehicle navigation to reduce traffic accidents caused by road freezing.

  • PDF