• Title/Summary/Keyword: Weather Sensor data

Search Result 152, Processing Time 0.019 seconds

Gap-Filling of Sentinel-2 NDVI Using Sentinel-1 Radar Vegetation Indices and AutoML (Sentinel-1 레이더 식생지수와 AutoML을 이용한 Sentinel-2 NDVI 결측화소 복원)

  • Youjeong Youn;Jonggu Kang;Seoyeon Kim;Yemin Jeong;Soyeon Choi;Yungyo Im;Youngmin Seo;Myoungsoo Won;Junghwa Chun;Kyungmin Kim;Keunchang Jang;Joongbin Lim;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1341-1352
    • /
    • 2023
  • The normalized difference vegetation index (NDVI) derived from satellite images is a crucial tool to monitor forests and agriculture for broad areas because the periodic acquisition of the data is ensured. However, optical sensor-based vegetation indices(VI) are not accessible in some areas covered by clouds. This paper presented a synthetic aperture radar (SAR) based approach to retrieval of the optical sensor-based NDVI using machine learning. SAR system can observe the land surface day and night in all weather conditions. Radar vegetation indices (RVI) from the Sentinel-1 vertical-vertical (VV) and vertical-horizontal (VH) polarizations, surface elevation, and air temperature are used as the input features for an automated machine learning (AutoML) model to conduct the gap-filling of the Sentinel-2 NDVI. The mean bias error (MAE) was 7.214E-05, and the correlation coefficient (CC) was 0.878, demonstrating the feasibility of the proposed method. This approach can be applied to gap-free nationwide NDVI construction using Sentinel-1 and Sentinel-2 images for environmental monitoring and resource management.

Change in Yield and Quality Characteristics of Rice by Drought Treatment Time during the Seedling Stage (벼 이앙 직후 유묘기 한발 피해시기에 따른 수량 및 미질 특성 변화)

  • Jo, Sumin;Cho, Jun-Hyeon;Lee, Ji-Yoon;Kwon, Young-Ho;Kang, Ju-Won;Lee, Sais-Beul;Kim, Tae-Heon;Lee, Jong-Hee;Park, Dong-Soo;Lee, Jeom-Sig;Ko, Jong-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.344-352
    • /
    • 2019
  • Drought stress caused by global climate change is a serious problem for rice cultivation. Increasingly frequent abnormal weather occurrences could include severe drought, which could cause water stress to rice during the seedling stage. This experiment was conducted to clarify the effects of drought during the seedling period on yield and quality of rice. Drought conditions were created in a rain shelter house facility. The drought treatment was conducted at 3, 10, and 20 days after transplanting. Soil water content was measured by a soil moisture sensor during the whole growth stage. In this study, we have chosen 3 rice cultivars which are widely cultivated in Korea: 'Haedamssal' (Early maturing), 'Samkwang' (Medium maturing), and 'Saenuri' (Mid-late maturing). The decrease in yield due to drought treatment was most severe 3 days after transplanting because of the decrease in the number of effective tillers. The decrease in grain quality due to drought treatment was also most severe 3 days after transplanting because of the increased protein content and hardness of the grains. The cultivar 'Haedamssal' was the most severely damaged by water stress, resulting in about a 30% yield loss. Drought conditions diminished the early vigorous growth period and days to heading in early-maturing cultivars. The results show that drought stress affects yield components immediately after transplanting, which is a decisive factor in reducing yield and grain quality. This study can be used as basic data to calculate damage compensation for drought damage on actual rice farms.