• 제목/요약/키워드: Weather Sensor data

Search Result 153, Processing Time 0.028 seconds

The Method of Object Location Sensing using RFID/USN for Ubiquitous Environment (유비쿼터스 환경을 위한 RFID/USN 기반 위치인식 방법)

  • Park, Sang-Yeol;Byun, Yung-Cheol;Kim, Jang-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.508-511
    • /
    • 2005
  • In the near future various new services will be created by using ubiquitous computing and ubiquitous network. Especially u-LBS(Ubiquitous Location Based Services) is recognized as one of the most important services. U-LBS is based on the data created by recognizing objects including both human and matters at any time and anywhere. Many researches related with object locating method by using RF are in the process of studying However there are few researches on the location of objects. In this paper we propose the recognition method of the location of objects by using RF and USN technology. In detail, the strength of RF signal is used to recognize the location of objects. Also we discuss about the future work to enhance the recognition rate of location by using a number of conditions including the weather, temperature etc. And Genetic Algorithm is used to get the optimal parameters with which we can get the more exact recognition rate of location.

  • PDF

An Analysis of Global Solar Radiation using the GWNU Solar Radiation Model and Automated Total Cloud Cover Instrument in Gangneung Region (강릉 지역에서 자동 전운량 장비와 GWNU 태양 복사 모델을 이용한 지표면 일사량 분석)

  • Park, Hye-In;Zo, Il-Sung;Kim, Bu-Yo;Jee, Joon-Bum;Lee, Kyu-Tae
    • Journal of the Korean earth science society
    • /
    • v.38 no.2
    • /
    • pp.129-140
    • /
    • 2017
  • Global solar radiation was calculated in this research using ground-base measurement data, meteorological satellite data, and GWNU (Gangneung-Wonju National University) solar radiation model. We also analyzed the accuracy of the GWNU model by comparing the observed solar radiation according to the total cloud cover. Our research was based on the global solar radiation of the GWNU radiation site in 2012, observation data such as temperature and pressure, humidity, aerosol, total ozone amount data from the Ozone Monitoring Instrument (OMI) sensor, and Skyview data used for evaluation of cloud mask and total cloud cover. On a clear day when the total cloud cover was 0 tenth, the calculated global solar radiations using the GWNU model had a high correlation coefficient of 0.98 compared with the observed solar radiation, but root mean square error (RMSE) was relatively high, i.e., $36.62Wm^{-2}$. The Skyview equipment was unable to determine the meteorological condition such as thin clouds, mist, and haze. On a cloudy day, regression equations were used for the radiation model to correct the effect of clouds. The correlation coefficient was 0.92, but the RMSE was high, i.e., $99.50Wm^{-2}$. For more accurate analysis, additional analysis of various elements including shielding of the direct radiation component and cloud optical thickness is required. The results of this study can be useful in the area where the global solar radiation is not observed by calculating the global solar radiation per minute or time.

Comparison of Observed Wave Height and Wave Image of Sok-cho Site (속초연안지점의 관측파고와 파영상자료의 비교)

  • Jang, Bok-Jin;Yeo, Woon-Kwang;Lee, Jong-Kook;Park, Kwang-Soon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.4
    • /
    • pp.329-335
    • /
    • 2007
  • The eye measurement to observe the sea surface condition and estimate the wave height has been used in the open sea or the ship. The experts in the eye estimation can measure the wave height very accurately. The Beaufort wind scale is most widely used as a standard index of the eye measurement. However, more definite reference data such as the representative images by each wave heights must be necessary because the appearances and explanations in the Beaufort wind scale are not enough to understand the sea surface condition far the researcher and the public. The modern field data acquisition technique has been developed to measure wave heights, ocean weather data and even images of the sea surface in real-time. In this study, the wireless field image transmitting system for wave heights and images is installed in the real-time ocean measurement system of Chodo light tower near Sokcho city in South Korea. The wave heights and surface images acquired from the real time system in the field are compared with explanations of the Beaufort wind scale. The wave heights and images measured with the precision ultrasonic wave sensor and the scientific sea surface image transmitting system should be helpful to obtain more precise and definite information than the data from the Beaufort wind scale.

Implementation of Greenhouse Environmental Control Systems using Intelligence (지능을 이용한 온실 제어 시스템)

  • Yang, J.;Chung, C.D.;Hong, You-Sik;Ahn, B.I;Hwang, S.I.;Choi, Y.H.
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.29-37
    • /
    • 2012
  • An experiment for an optimized automatic greenhouse environment in a flower farming greenhouse by building a ubiquitous sensor network with various sensors was conducted and the results were evaluated. And various culturing environmental information and data in the greenhouse were collected and analyzed. Then, the greenhouse was designed to maintain the best culturing environment on the basis of existing recommended optimized figures. By measuring the growth of the crops in the greenhouse, A system which controls facilities in the greenhouse to maintain the best culturing environment in accordance with change in the environment was analyzed.Computer simulation result proced that we discovered that controlling the facilities and the artificial light source increased production, enhanced quality, reduced labor and heating cost immensely. The experiment has proved that the u-flower farming system can maximize the income of farm families by sending warning messages to users of this system when weather suddenly changes so that users may cope with such changes and maintain the best culturing environment.

A Smart Farm Environment Optimization and Yield Prediction Platform based on IoT and Deep Learning (IoT 및 딥 러닝 기반 스마트 팜 환경 최적화 및 수확량 예측 플랫폼)

  • Choi, Hokil;Ahn, Heuihak;Jeong, Yina;Lee, Byungkwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.6
    • /
    • pp.672-680
    • /
    • 2019
  • This paper proposes "A Smart Farm Environment Optimization and Yield Prediction Platform based on IoT and Deep Learning" which gathers bio-sensor data from farms, diagnoses the diseases of growing crops, and predicts the year's harvest. The platform collects all the information currently available such as weather and soil microbes, optimizes the farm environment so that the crops can grow well, diagnoses the crop's diseases by using the leaves of the crops being grown on the farm, and predicts this year's harvest by using all the information on the farm. The result shows that the average accuracy of the AEOM is about 15% higher than that of the RF and about 8% higher than the GBD. Although data increases, the accuracy is reduced less than that of the RF or GBD. The linear regression shows that the slope of accuracy is -3.641E-4 for the ReLU, -4.0710E-4 for the Sigmoid, and -7.4534E-4 for the step function. Therefore, as the amount of test data increases, the ReLU is more accurate than the other two activation functions. This paper is a platform for managing the entire farm and, if introduced to actual farms, will greatly contribute to the development of smart farms in Korea.

Deduction of Data Quality Control Strategy for High Density Rain Gauge Network in Seoul Area (서울시 고밀도 지상강우자료 품질관리방안 도출)

  • Yoon, Seongsim;Lee, Byongju;Choi, Youngjean
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.4
    • /
    • pp.245-255
    • /
    • 2015
  • This study used high density network of integrated meteorological sensor, which are operated by SK Planet, with KMA weather stations to estimate the quantitative precipitation field in Seoul area. We introduced SK Planet network and analyzed quality of the observed data for 3 months data from 1 July to 30 September 2013. As the quality analysis result, we checked most SK Planet stations observed similar with previous KMA stations. We developed the real-time quality check and adjustment method to reduce the error effect for hydrological application by missing and outlier value and we confirmed the developed method can be corrected the missing and outlier value. Through this method, we used the 190 stations(KMA 34 stations, SK Planet 156 stations) that missing ratio is less than 20% and the effect of the outlier was the smallest for quantitative precipitation estimation. Moreover, we evaluated reproducibility of rainfall field high density rain gauge network has $3km^2$/gauge. As the result, the spatial relative frequency of rainfall field using SK Planet and KMA stations is similar with radar rainfall field. And, it supplement the blank of KMA observation network. Especially, through this research we will take advantage of the density of the network to estimate rainfall field which can be considered as a very good approximation of the true value.

Spatio-Temporal Variations of Harmful Algal Blooms in the South Sea of Korea

  • Kim, Dae-Hyun;Denny, Widhiyanuriyawan;Min, Seung-Hwan;Lee, Dong-In;Yoon, Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.475-486
    • /
    • 2009
  • Harmful algal blooms (HAB) caused by the dominant species Cochlodinium polykrikoides (C. polykrikoides) appear in the South Sea of Korea and are particularly present in summer and fall seasons. Environmental factors such as water temperature, weather conditions (air temperature, cloud cover, sunshine, precipitation and wind) influence on the initiation and subsequent development of HAB. The purpose of this research was to study spatial and temporal variations of HAB in the Yeosu area using environmental (oceanic and meteorological) and satellite data. Chlorophyll-a concentrations were calculated using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) images by an Ocean Chlorophyll 4 (OC4) algorithm, and HAB were estimated using the Red tide index Chlorophyll Algorithm (RCA). We also used the surface velocity of sequential satellite images applying the Maximum Cross Correlation method to detect chlorophyll-a movement. The results showed that the water temperature during HAB occurrences in August 2002-2008 was $19.4-30.2^{\circ}C$. In terms of the frequency of the mean of cell density of C. polykrikoides, the cell density of the HAB found at low (<300 cells/ml), medium (300-1000 cells/ml), and high (>1000 cells/ml) levels were 27.01%, 37.44%, and 35.55%, respectively. Meteorological data for 2002-2008 showed that the mean air temperature, precipitation, wind speed and direction, and sunshine duration were $22.39^{\circ}C$, 6.54 mm/day, 3.98 m/s (southwesterly), and 1-11.7 h, respectively. Our results suggest that HAB events in the Yeosu area can be triggered and extended by heavy precipitation and massive movement of HAB from the East China Sea. Satellite images data from July to October 2002-2006 showed that the OC4 algorithm generally estimated high chlorophyll-a concentration ($2-20\;mg/m^3$) throughout the coastal area, whereas the RCA estimated concentrations at $2-10\;mg/m^3$. The surface velocity of chlorophyll-a movement from sequential satellite images revealed the same patterns in the direction of the Tsushima Warm Current.

A Numerical Study on the Characteristics of Flows and Fine Particulate Matter (PM2.5) Distributions in an Urban Area Using a Multi-scale Model: Part II - Effects of Road Emission (다중규모 모델을 이용한 도시 지역 흐름과 초미세먼지(PM2.5) 분포 특성 연구: Part II - 도로 배출 영향)

  • Park, Soo-Jin;Choi, Wonsik;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1653-1667
    • /
    • 2020
  • In this study, we coupled a computation fluid dynamics (CFD) model to the local data assimilation and prediction system (LDAPS), a current operational numerical weather prediction model of the Korea Meteorological Administration. We investigated the characteristics of fine particulate matter (PM2.5) distributions in a building-congested district. To analyze the effects of road emission on the PM2.5 concentrations, we calculated road emissions based on the monthly, daily, and hourly emission factors and the total amount of PM2.5 emissions established from the Clean Air Policy Support System (CAPSS) of the Ministry of Environment. We validated the simulated PM2.5 concentrations against those measured at the PKNU-AQ Sensor stations. In the cases of no road emission, the LDAPS-CFD model underestimated the PM2.5 concentrations measured at the PKNU-AQ Sensor stations. The LDAPS-CFD model improved the PM2.5 concentration predictions by considering road emission. At 07 and 19 LST on 22 June 2020, the southerly wind was dominant at the target area. The PM2.5 distribution at 07 LST were similar to that at 19 LST. The simulated PM2.5 concentrations were significantly affected by the road emissions at the roadside but not significantly at the building roof. In the road-emission case, the PM2.5 concentration was high at the north (wind speeds were weak) and west roads (a long street canyon). The PM2.5 concentration was low in the east road where the building density was relatively low.

Fundamental Research of Preservation & Utility Facilities in Wetland Protected Area - 5 Wetland Protected Areas were Used as Main Subjects - (습지보호지역의 습지보전·이용시설 현황에 관한 기초 연구 - 5개 습지보호지역을 대상으로 -)

  • Cho, Dong-Gil;Park, Yong-Su;Shim, Yun-Jin;Lee, Ji-Hyun;Lee, Dong-Jin;Kim, Sang-Hyuk;Cha, Jin-Yeol;Park, Mi-Young;Song, Yu-jin;Nam, Chun-hee;Kim, Jong-cheol;Moon, Sang-kyun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.1
    • /
    • pp.25-43
    • /
    • 2016
  • This research was completed to provide fundamental data regarding the guidelines to installing and managing utility facilities & structures in wetland protected area to advance the functions and sustainable use of ecology services by preserving the ecology within wetland protected area. There were 5 on-site researching areas that were used as the main subject with these areas chosen and considered from 21 inland wetlands that have been designated and are being managed from the Ministry of Environment and by their designated dates as a wetland protected area. The utility facilities in these wetland areas were categorized by their types and a detailed on-site investigation was proceeded with investigation items chosen whereas these facilities are working by their roles from their location, size, used materials, types, information contents and etc., The results showed that regarding informational structures, several locations of information boards were distanced from the main exploring routes which did not consider the visitor's eye level which had their readability dropped and by sunlight, time lapse and water penetration, many information boards were damaged or corrupted so that it was hard to confirm the information noticed or understanding an image. Insufficient observation and educational structures were installed that considered the ecological characteristics of wild animals and their living conditions. Regarding convenience facilities, there were parking lots that were installed on the fore-land and to decrease non-point solution sources, some parking lots needed to be located in protected lowlands while some facilities' shape and colors did not harmonize with their natural surroundings, creating a sense of awareness, which will need some more consideration. As for safety facilities, they were very insufficient compared to other facilities. This means that additional safety structures are needed so that related personnel can be aware of where a visitor is located when an accident occurs. Protectional facilities strongly needed new structures and a management system to cut off entrances and do surveillance so that visitors do not go into areas outside of the managed areas and bring damages to restricted locations. Research labs needed to expand the use of automatic weather systems and water gauge equipments to build fundamental data regarding floodgates that are intimated to the forming of wetlands. Sensor cameras and other types of monitoring systems are needed to monitor the majority types of animals living in the wetlands as well.

Estimation of Total Precipitable Water from MODIS Infrared Measurements over East Asia (MODIS 적외 자료를 이용한 동아시아 지역의 총가강수량 산출)

  • Park, Ho-Sun;Sohn, Byung-Ju;Chung, Eui-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.309-324
    • /
    • 2008
  • In this study the retrieval algorithms have been developed to retrieve total precipitable water (TPW) from Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) infrared measurements using a physical iterative retrieval method and a split-window technique over East Asia. Retrieved results from these algorithms were validated against Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) over ocean and radiosonde observation over land and were analyzed for investigating the key factors affecting the accuracy of results and physical processes of retrieval methods. Atmospheric profiles from Regional Data Assimilation and Prediction System (RDAPS), which produces analysis and prediction field of atmospheric variables over East Asia, were used as first-guess profiles for the physical retrieval algorithm. We used RTTOV-7 radiative transfer model to calculate the upwelling radiance at the top of the atmosphere. For the split-window technique, regression coefficients were obtained by relating the calculated brightness temperature to the paired radiosonde-estimated TPW. Physically retrieved TPWs were validated against SSM/I and radiosonde observations for 14 cases in August and December 2004 and results showed that the physical method improves the accuracy of TPW with smaller bias in comparison to TPWs of RDAPS data, MODIS products, and TPWs from split-window technique. Although physical iterative retrieval can reduce the bias of first-guess profiles and bring in more accurate TPWs, the retrieved results show the dependency upon initial guess fields. It is thought that the dependency is due to the fact that the water vapor absorption channels used in this study may not reflect moisture features in particular near surface.