• 제목/요약/키워드: Weather Observation

검색결과 610건 처리시간 0.067초

전자기파 빔 차폐 사각 지역 해소를 위한 한반도 레이더 관측망 모의 (Simulation of Radar Network for Observational Gap Filling as Electromagnetic Waves Beam Blockage in the Korean Peninsula)

  • 조준모;권병혁;윤홍주
    • 한국전자통신학회논문지
    • /
    • 제15권3호
    • /
    • pp.553-562
    • /
    • 2020
  • S 밴드, C 밴드 그리고 X 밴드 레이더는 기상 관측을 목적으로 사용되고 있다. 기상청, 환경부, 공군은 부처별 관측 목적에 따라 레이더를 운용하고 있기 때문에 설치 지점과 관측 특성이 서로 다르다. 기상 관측 관점에서는 지리산과 태백산 인근의 산악 지형을 따라 고도 1 km 이하의 저층 관측의 한계 지역이 나타난다. 소형 레이더 설치를 가정하여 저층 관측 보완을 모의하였다. 또한, 북한 지역의 위험 기상 감시를 위해 북한의 강수를 분석하고 대형 레이더 관측망을 모의하였다. 종합하여 한반도 레이더 관측망 구축안을 제시하였다.

경희대학교 태양관측시스템 (SOLAR OBSERVATIONAL SYSTEM OF KYUNGHEE UNIVERSITY)

  • 김일훈;김갑성
    • 천문학논총
    • /
    • 제13권1호
    • /
    • pp.39-54
    • /
    • 1998
  • We have developed solar observational system in the department of Astronomy & Space Sciences of KyungHee University, in order to monitor solar activities and construct solar database for space weather forecasting at maximum of 23rd solar cycle, as well as an solar education and exercise for undergraduate students. Our solar observational system consists of the full disk monitoring system and the regional observation system for H a fine structure. Full disk monitoring system is made of an energy rejection filter, 16cm refractor, video CCD camera and monitor. Monitored data are recorded to VHS video tape and analog output of video CCD can be captured as digital images by the computer with video graphic card. Another system for regional observation of the sun is made of energy rejection filter, 21cm Schmidt-Cassegrain reflector, H a filter with 1.6A pass band width and $375\times242$ CCD camera. We can observe H a fine structure in active regions of solar disk and solar limb, by using this system. We have carried out intense solar observations for a test of our system. It is found that Quality of our H a image is as good as that of solar images provided by Space Environmental Center. In this paper, we introduce the basic characteristics of the KyungHee Solar Observation System and result of our solar observations. We hope that our data should be used for space weather forecasting with domestic data of RRL(Radio Research Laboratory) and SOFT(SOlar Flare Telescope).

  • PDF

Statistical Analysis on Weather Conditions at Chungbuk National University Observatory in Jincheon, Korea

  • Yoon, Joh-Na;Lee, Yong Sam;Kim, Chun-Hwey;Kim, Yonggi;Yim, Hong-Suh;Han, Wonyong;Jeong, Jang Hae
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권4호
    • /
    • pp.397-405
    • /
    • 2012
  • Astronomical Observations at Chungbuk National University Observatory (CBNUO) with an 1 m telescope have begun since April 2008, and Near-Earth Space Survey observations also have been started since November 2010, with a 0.6 m wide field telescope developed by Korea Astronomy and Space Science Institute. To improve observational efficiency, we developed a weather monitoring system enabling automatic monitoring for the weather conditions and checking the status of the observational circumstances, such as dome status. We hope this weather monitoring system can be helpful to more than 100 Korean domestic observatories, including public outreach facilities. In this paper, we present the statistic analysis of the weather conditions collected at CBNUO for 3 years (2009- 2011) and comparisons were made for clear nights between using only humidity data and both humidity and cloud data.

위험기상 대응 농업기상관측 네트워크의 현황: 농촌진흥청을 중심으로 (Status of Agrometeorology Monitoring Network for Weather Risk Management: Focused on RDA of Korea)

  • 심교문;김용석;정명표;최인태;소규호
    • 한국기후변화학회지
    • /
    • 제6권1호
    • /
    • pp.55-60
    • /
    • 2015
  • Agro-Meteorological Information Service (AMIS) network has been established since 2001 by Rural Development Administration (RDA) in Korea, and has provided access to current and historical weather data with useful information for agricultural activities. AMIS network includes 158 automated weather stations located mostly in farm region, with planning to increase by 200 stations until 2017. Agrometeorological information is disseminated via the web site (http://weather.rda.go.kr) to growers, researchers, and extension service officials. Our services will give enhanced information from observation data (temperature, precipitation, etc.) to application information, such as drought index, agro-climatic map, and early warning service. AMIS network of RDA will help the implementation of an early warning service for weather risk management.

인공강우 항공실험을 위한 한반도 기상조건의 예비결과 (Meteorological Conditions for the Cloud Seeding Experiment by Aircraft in Korea)

  • 정운선;장기호;고아름;구정모;노용훈;채상희;차주완;이철규
    • 한국환경과학회지
    • /
    • 제30권12호
    • /
    • pp.1027-1039
    • /
    • 2021
  • In this study, we investigated the optimal meteorological conditions for cloud seeding using aircraft over the Korean Peninsula. The weather conditions were analyzed using various data sources such as a weather chart, upper air observation, aircraft observation, and a numerical model for cloud seeding experiments conducted from 2018 to 2019 by the National Institute of Meteorological Sciences, Korea Meteorological Administration. Cloud seeding experiments were performed in the seasons of autumn (37.0%) and winter (40.7%) in the West Sea and Gangwon-do. Silver iodide (70.4%) and calcium chloride (29.6%) were used as cloud seeding materials for the experiments. The cloud seeding experiments used silver iodide in cold clouds. Aircraft observation revealed relatively low temperatures, low liquid water content, and strong wind speeds in clouds with a weak updraft. In warm clouds, the cloud seeding experiments used calcium chloride. Observations included relatively high temperatures, high liquid water content, and weak wind speeds in clouds with a weak updraft. Based upon these results, we determined the comprehensive meteorological conditions for cloud seeding experiments using aircraft over the Korean Peninsula. The understanding of optimal weather conditions for cloud seeding gained from this study provide information critical for performing successful cloud seeding and rain enhancement.

도시 열환경 평가를 위한 기온관측망 영향범위 분석 (Analysis on Effective Range of Temperature Observation Network for Evaluating Urban Thermal Environment)

  • 김효민;박찬;정승현
    • KIEAE Journal
    • /
    • 제16권6호
    • /
    • pp.69-75
    • /
    • 2016
  • Climate change has resulted in the urban heat island (UHI) effect throughout the globe, contributing to heat-related illness and fatalities. In order to reduce such damage, it is necessary to improve the climate observation network for precise observation of the urban thermal environment and quick UHI forecasting system. Purpose: This study analyzed the effective range of the climate observation network and the distribution of the existing Automatic Weather Stations (AWS) in Seoul to propose optimal locations for additional installment of AWS. Method: First, we performed quality analysis to pinpoint missing values and outliers within the high-density temperature data measured. With the result from the analysis, a spatial autocorrelation structure in the temperature data was tested to draw the effective range and correlation distance for each major time period. Result: As a result, it turned out that the optimal effective range for the climate observation network in Seoul in July was a radius of 2.8 kilometers. Based on this result, population density, and temperature data, we selected the locations for additional installment of AWS. This study is expected to be used to generate urban temperature maps, select and move measurement locations since it is able to suggest valid, specific spatial ranges when the data measured in point is converted into surface data.

현장학습을 위한 천체관측 프로그램의 개발과 적용 (Development and Application of Astronomical Observation Program for Field Trip)

  • 김상달;박종철
    • 대한지구과학교육학회지
    • /
    • 제1권1호
    • /
    • pp.52-62
    • /
    • 2008
  • The purpose of this study is to find out learning content for astronomical observation that could perform astronomical programs regardless of weather conditions as a case for the present conditions of astronomical observation and the methods of new education for astronomical observation, and to suggest the methods of synchronized multiple astronomical observation and actual cases using the Internet network. The results are as follows. First, the method of galaxy-oriented astronomical education helped those attempting to approach astronomy academically for the first time grasp useful concepts as to the astronomical space, and let them look at the space in an objective sense, which was effective in forming cosmic structure and concepts. Second, the administration curriculum of astronomical observation team was related to data that systematically contained annual astronomical education concerning the operation of astronomical observation teams; thus, they could be suggested as beneficial teaching materials to the teachers who wanted to organize a school club meeting. Third, it has been noted that the level of students' satisfaction in p2d program and MSO program was very high, and they turned out to be effective learning methods that could be implemented even in times of rain when it would not be possible to conduct astronomical observation activities.

  • PDF

2012년 특별관측 자료를 이용한 동해안 겨울철 강수 특성 분석 (Characteristics of Precipitation over the East Coast of Korea Based on the Special Observation during the Winter Season of 2012)

  • 정승필;임윤규;김기훈;한상옥;권태영
    • 한국지구과학회지
    • /
    • 제35권1호
    • /
    • pp.41-53
    • /
    • 2014
  • 겨울철 동해안 강수 현상에 대한 규명을 위하여 라디오존데를 활용한 특별관측을 2012년 1월 5일부터 2월 29일까지 실시하였고, 이 연구는 대기의 불안정을 나타내는 다양한 변수를 활용하여 강수 사례의 분석을 수행하였다. 그 결과, 강수가 발생할 때 지표면(1000 hPa)에서 중층(약 750 hPa)까지의 상당온위가 증가하는 것을 볼 수 있었고, 이러한 대기층(1000~750 hPa)은 불안정을 일으키기에 충분한 수준의 수증기를 함유하고 있었다. 대류가용잠재에너지의 시간적인 변화를 살펴본 결과 강수가 발생하였을 때 증가하는 것을 볼 수 있었고, 연직바람쉬어의 경우에서도 대류가용잠재에너지와 마찬가지로 강수 기간 동안 상승하여 일정수준 이상의 값을 유지하는 것을 확인할 수 있었다. 강수에 따른 대기 구조의 상세한 분석을 위하여 지상 원격 탐사 자료와 지상 관측 자료를 활용하여 분석을 수행하였다. 또한 가강수량과 바람벡터를 이용하여 가강수량플럭스를 계산하였다. 가강수량플럭스와 강수량은 북동풍 계열의 바람이 발생하였을 때 높은 관계성을 보였다. 그 결과 동해안영역에서 발생하는 강수 현상에서는 풍계와 같은 역학적인 작용의 이해가 중요한 것으로 판단되었다.

극 저기압(Polar Low) 통과에 의해 발생한 남극 세종기지 강풍 사례 모의 연구 (A Numerical Simulation of Blizzard Caused by Polar Low at King Sejong Station, Antarctica)

  • 권하택;박상종;이솔지;김성중;김백민
    • 대기
    • /
    • 제26권2호
    • /
    • pp.277-288
    • /
    • 2016
  • Polar lows are intense mesoscale cyclones that mainly occur over the sea in polar regions. Owing to their small spatial scale of a diameter less than 1000 km, simulating polar lows is a challenging task. At King Sejong station in West Antartica, polar lows are often observed. Despite the recent significant climatic changes observed over West Antarctica, adequate validation of regional simulations of extreme weather events such as polar lows are rare for this region. To address this gap, simulation results from a recent version of the Polar Weather Research and Forecasting model (Polar WRF) covering Antartic Peninsula at a high horizontal resolution of 3 km are validated against near-surface meteorological observations. We selected a case of high wind speed event on 7 January 2013 recorded at Automatic Meteorological Observation Station (AMOS) in King Sejong station, Antarctica. It is revealed by in situ observations, numerical weather prediction, and reanalysis fields that the synoptic and mesoscale environment of the strong wind event was due to the passage of a strong mesoscale polar low of center pressure 950 hPa. Verifying model results from 3 km grid resolution simulation against AMOS observation showed that high skill in simulating wind speed and surface pressure with a bias of $-1.1m\;s^{-1}$ and -1.2 hPa, respectively. Our evaluation suggests that the Polar WRF can be used as a useful dynamic downscaling tool for the simulation of Antartic weather systems and the near-surface meteorological instruments installed in King Sejong station can provide invaluable data for polar low studies over West Antartica.