• Title/Summary/Keyword: Weather Observation

검색결과 610건 처리시간 0.033초

PACIFIC EXTREME WIND AND WAVE CONDITIONS OBSERVED BY SYNTHETIC APERTURE RADAR

  • Lehner, Susanne;Reppucci, Antonio;Schulz-Stellenfleth, Johannes;Yang, Chang-Su
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.390-393
    • /
    • 2006
  • It is well known that synthetic aperture radar (SAR) provides information on ocean winds and surface waves. SAR data are of particularly high value in extreme weather conditions, as radar is able to penetrate the clouds providing information on different ocean surface processes. In this presentation some recent results on SAR observation of extreme wind and ocean wave conditions is summarised. Particular emphasize is put on the investigation of typhoons and extratropical cyclones in the North Pacific. The study is based on the use of ENVISAT ASAR wide swath images. Wide swath and scansar data are well suited for a detailed investigation of cyclones. Several examples like, e.g., typhoon Talim will be presented, demonstrating that these data provide valuable information on the two dimensional structure of the both the wind and the ocean wave field. Comparisons of the SAR observation with parametric and numerical model data will be discussed. Some limitations of standard imaging models like, e.g., CMOD5 for the use in extreme wind conditions are explained and modifications are proposed. Finally the study summarizes the capabilities of new high resolution TerraSAR-X mission to be launched in October 2006 with respect to the monitoring of extreme weather conditions. The mission will provide a spatialresolution up to 1m and has full polarimetric capabilities.

  • PDF

KIAPS 전지구 수치예보모델 시스템에서 SAPHIR 자료동화 효과 (Impact of SAPHIR Data Assimilation in the KIAPS Global Numerical Weather Prediction System)

  • 이시혜;전형욱;송효종
    • 대기
    • /
    • 제28권2호
    • /
    • pp.141-151
    • /
    • 2018
  • The KIAPS global model and data assimilation system were extended to assimilate brightness temperature from the Sondeur $Atmosph{\acute{e}}rique$ du Profil $d^{\prime}Humidit{\acute{e}}$ Intertropicale par $Radiom{\acute{e}}trie$ (SAPHIR) passive microwave water vapor sounder on board the Megha-Tropiques satellite. Quality control procedures were developed to assess the SAPHIR data quality for assimilating clear-sky observations over the ocean, and to characterize observation biases and errors. In the global cycle, additional assimilation of SAPHIR observation shows globally significant benefits for 1.5% reduction of the humidity root-mean-square difference (RMSD) against European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) analysis. The positive forecast impacts for the humidity and temperature in the experiment assimilating SAPHIR were predominant at later lead times between 96- and 168-hour. Even though its spatial coverage is confined to lower latitudes of $30^{\circ}S-30^{\circ}N$ and the observable variable is humidity, the assimilation of SAPHIR has a positive impact on the other variables over the mid-latitude domain. Verification showed a 3% reduction of the humidity RMSD with assimilating SAPHIR, and moreover temperature, zonal wind and surface pressure RMSDs were reduced up to 3%, 5% and 7% near the tropical and mid-latitude regions, respectively.

Gamma-Ray Burst Observation by SNIPE mission

  • Lee, Jae-Jin;Kim, Hong Joo;Nam, Uk-Won;Park, Won-Kee;Shon, Jongdae;Kim, Soon-Wook;Kim, Jeong-Sook;Kang, Yong-Woo;Uhm, Z. Lucas;Kang, Sinchul;Im, Sang Hyeok;Kim, Sunghwan
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.39.3-40
    • /
    • 2020
  • For the space weather research, KASI (Korea Astronomy and Space Science Institute) is developing the SNIPE (Small-scale magNetospheric and Ionospheric Plasma Experiment) mission, which consists of four 6U CubeSats of ~10 kg. Besides of space weather research, the SNIPE mission has another astrophysical objective, detecting Gamma-Ray Bursts(GRB). By cross-correlating the light curves of the detected GRBs, the fleet shall be able to determine the time difference of the arriving signal between the satellites and thus determine the position of bright short bursts with an accuracy ~100'. To demonstrate the technology of the GRB observation, CSI gamma-ray detectors combined with GPS and IRIDIUM communication modules are placed on each SNIPE CubeSat. The time of each spacecraft is synchronized and when the GRB is detected, the light curve will be transferred to the Mission Operation Center (MOC) by IRIDIUM communication module. By measuring time difference of each GRB signals, the technology for localization of GRB will be proved. If the results show some possibilities, we can challenge the new astrophysical mission for investigating the origin of GRB.

  • PDF

범용 라디오 수신장비를 활용한 라디오존데 관측 (Radiosonde Observation Using General Purpose Radio Receiving Instruments)

  • 강현규;김주완;박민성;안상현
    • 대기
    • /
    • 제34권3호
    • /
    • pp.325-336
    • /
    • 2024
  • Radiosonde is an important in-situ profiling instrument that measures atmospheric temperature, moisture, and wind structure from the surface to the middle stratosphere. The operational radiosonde measurements are carried out more than twice (at 0000 UTC and 1200 UTC) daily at approximately 1,300 World Meteorological Organization (WMO) stations and play a pivotal role in daily weather forecasts. It also contributes to the monitoring of atmospheric structure by providing the key physical information like temperature and pressure, forming the backbone of atmospheric (re)analyses and numerical weather forecasts. Additionally, high-resolution radiosonde profiles are used for calibration and evaluation of satellite products. Despite these advantages, radiosonde measurements are mostly limited to operational uses due to the high initial cost of ground instrument setup required for data transmission and reception. This study outlines a cost-effective (roughly one-tenth of the operational cost) method for establishing the ground station and the necessary radiosonde measurement procedures, offering guidance for individual researchers or university-level instructors.

소백산천문대 2K CCD 카메라용 관측 프로그램 개발 (AN OBSERVATION PROGRAM FOR THE SOAO 2K CCD CAMERA)

  • 김승리;경재만;권순길;윤재혁
    • 천문학논총
    • /
    • 제16권1호
    • /
    • pp.37-42
    • /
    • 2001
  • We developed an observation program for a 2K CCD camera, which was newly attached at the SOAO (Sobaeksan Optical Astronomy Observatory) 61cm telescope. The program was designed to control the telescope as well as the CCD camera and to monitor the CCD image quality, with very easy under the window-based graphical user interface (GUI). Furthermore, applying the automated differential photometric algorithm, we can obtain the instrumental magnitudes of several variable and comparison stars in real-time. Simultaneous photometry enables us to get precise differential magnitudes of variable stars even if the weather condition is not photometric. This new observation system has been using for many astronomical observations from September, 2001.

  • PDF

인삼의 수분생리 1. 자생지관찰.재배 경험.기상요인과 근 및 엽의 특성 (Water Physiology of Panax ginseng. 1. Habitat observation. cultural experience, weather factors and characteristics of root and leaf)

  • 박훈
    • Journal of Ginseng Research
    • /
    • 제4권2호
    • /
    • pp.197-221
    • /
    • 1980
  • Habitat observation, cultural experience of old and present plantation, weather factors in relation to crop stand and water physiology of root and leaf were reviewed. According to habitat observation ginseng plants love water but plate wit talus well grow at drained place with high moisture content in air and soil while ginseng plants were not found in dry or wet place. According to cultivation experience ginseng plants require abundant water in nursery and main field but most old planters believe that ginseng plaints are draught-loving thus require little water. The experience that rain especially in summer i.e unfavorable might be due to mechanical damage of leaves arid leaf disease infection, or severe leaf fall which is caused by high air temperature and coinsided with rain. According to crop stand observation in relation to weather factors abunsant water increased each root weight but decreased total yield indicating tile increase of missing root rate. Rain in summer was unfavorable too. Though rain in June was favorable for high yield general experience that cloudy day and rain were unfavorable might be due to low light intensity under shade. Present leading planters also do loot consider the importance of water in main field. Water content is higher in top than in root and highest in central portion of root and in stem of top. For seedling the heavier the weight of root is tile higher the water content while it reveries from two years old. Water potential of intact root appeared to be -2.89 bar suggesting high sensitivity to water environment. Under water stress water content severly decreased only in leaf. Water content of leaf appeared to be 78% for optimum, below 72% for functional damage and 68% for perm anent wilting. Transpiration or curs Principally through stomata in lower side of leaf thus contribution of upper side transpiration decreased with the increase of intensity. Transpiration is greater in the leaves grown under high light intensity. Thus water content is lower with high light inte nsity under field condition indicating that light is probable cause of water stress in field. Transpiration reached maximum at 10K1ut The decrease of transpiration at higher temperature seems to be due to the decrease of stomata aperture caused by water stress. Severe decrease of photosynthesis under water stress seems to be principally due to functional damage which is not caused by high temperature and Partly due to poor CO2 supply. Water potential of leaf appeared to be -16.8 bar suggesting weakness in draught tolerance. Ginseng leaves absorb water under high humidity. Water free space of leaf disc is %mailer than that of soybean leaf and water uptake appears to be more than two steps.

  • PDF

DEVELOPMENT OF DATA INTEGRATION AND INFORMATION FUSION INFRASTRUCTURE FOR EARTH OBSERVATION

  • Takagi Mikio;Kltsuregawa Masaru;Shibasaki Ryousuke;Ninomiya Seishi;Koike Toshio
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.22-25
    • /
    • 2005
  • The 10 Year Implementation Plan for a Global Earth Observation System of Systems (GEOSS), which was endorsed at the Third Earth Observation Summit in Brussels in February, 2005, emphasizes the importance of data management facilities for diverse and large-volume Earth Observation data from inhomogeneous information sources. A three year research plan for addressing this key target of GEOSS has just approved as the first step by the Japanese government. The goals of this research are, (1) to develop a data management core system consisting of data integration and information fusion functions and interoperability and information service functions; (2) to establish data and information flows between data providers and users; (3) to promote application studies of data integration and information fusion, especially in the fields of weather forecasting, flood forecasting, agricultural management, and climate variability and changes. The research group involves leading scientists on information science and technology, who have been developing giant data archive servers, storage area networks, metadata models, ontology for the earth observations. They are closely cooperating with scientists on earth sciences, water resources management, and agriculture, and establishing an effective collaborative research framework.

  • PDF

클래스 불균형 데이터를 이용한 나이브 베이즈 분류기 기반의 이상전파에코 식별방법 (Naive Bayes Classifier based Anomalous Propagation Echo Identification using Class Imbalanced Data)

  • 이한수;김성신
    • 한국정보통신학회논문지
    • /
    • 제20권6호
    • /
    • pp.1063-1068
    • /
    • 2016
  • 이상전파에코는 대기 관측을 위해서 사용되는 레이더 전파가 온도나 습도에 의해서 발생하는 이상굴절에 의해서 발생하는 신호로, 지상에 설치된 기상레이더에 자주 발생하는 비기상에코이다. 기상예보의 정확도를 높이기 위해서는 레이더 데이터의 정확한 분석이 필수적이기 때문에 이상전파에코의 제거에 대한 연구가 수행되어 오고 있다. 본 논문에서는 다양한 레이더 관측변수를 나이브 베이지안 분류기에 적용하여 이상전파에코를 식별하는 방법에 대한 연구를 수행하였다. 수집된 데이터가 클래스 불균형 문제를 내포하고 있는 점을 고려하여, SMOTE 기법을 이용하였다. 실제 이상전파에코 발생 사례를 통해, 제안한 방법이 성능을 표출하는 것을 확인하였다.

에어로솔의 대륙 층운형 구름 연직발달(Invigoration)에 미치는 영향 분석 (An Analysis of Aerosols Impacts on the Vertical Invigoration of Continental Stratiform Clouds)

  • 김유준;한상옥;이철규;이승수;김병곤
    • 대기
    • /
    • 제23권3호
    • /
    • pp.321-329
    • /
    • 2013
  • This study examines the effect of aerosols on the vertical invigoration of continental stratiform clouds, using a dataset of Atmospheric Radiation Measurement (ARM) Intensive Operational Period (IOP, March 2000) at the Southern Great Plains (SGP) site. To provide further support to our observation-based findings, the weather research and forecasting (WRF) sensitivity simulations with changing cloud condensation nuclei (CCN) concentrations have been carried out for the golden episode over SGP. First, cross correlation between observed aerosol scattering coefficient and cloud liquid water path (LWP) with a 160-minutes lag is the highest of r = 0.83 for the selected episode, which may be attributable to cloud vertical invigoration induced by an increase in aerosol loading. Modeled cloud fractions in a control run are well matched with the observation in the perspective of cloud morphology and lasting period. It is also found through a simple sensitivity with a change in CCN that aerosol invigoration (AIV) effect on stratiform cloud organization is attributable to a change in the cloud microphysics as well as dynamics such as the corresponding modification of cloud number concentrations, drop size, and latent heating rate, etc. This study suggests a possible cloud vertical invigoration even in the continental stratiform clouds due to aerosol enhancement in spite of a limited analysis based on a few observed continental cloud cases.

머신러닝을 이용한 안개 예측 시 목측과 시정계 계측 방법에 따른 모델 성능 차이 비교 (Comparison of Machine Learning Model Performance based on Observation Methods using Naked-eye and Visibility-meter)

  • 박창현;이순환
    • 한국지구과학회지
    • /
    • 제44권2호
    • /
    • pp.105-118
    • /
    • 2023
  • 본 연구에서는 2016년부터 2020년까지 내륙 관측소 중 안개 최다발 지역인 안동을 대상으로 XGBoost-DART 머신러닝 알고리즘을 이용하여 1 시간 후 안개 유무를 예측하였다. 기상자료, 농업관측자료, 추가 파생자료와 각 자료를 오버 샘플링한 확장자료, 총 6개의 데이터 세트를 사용하였다. 목측으로 획득한 기상현상번호와 시정계 관측으로 측정된 시정거리 자료를 각각 안개 유[1]무[0]로 이진 범주화하였다. 총 12개의 머신러닝 모델링 실험을 설계하였고, 안개가 사회와 지역사회에 미치는 유해성을 고려하여 모델의 성능은 재현율과 AUC-ROC를 중심으로 평가하였다. 전체적으로, 오버샘플링한 기상자료와 기상현상번호 기반의 예측 목표를 조합한 실험이 최고 성능을 보였다. 이 연구 결과는 머신러닝 알고리즘을 활용한 안개 예측에 있어서, 목측으로 획득한 기상현상번호의 중요성을 암시한다.