• Title/Summary/Keyword: Weather Index

Search Result 471, Processing Time 0.029 seconds

A Study on Identification of the Heat Vulnerability Area Considering Spatial Autocorrelation - Case Study in Daegu (공간적 자기상관성을 고려한 폭염취약지역 도출에 관한 연구 - 대구광역시를 중심으로)

  • Seong, Ji Hoon;Lee, Ki Rim;Kwon, Yong Seok;Han, You Kyung;Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.295-304
    • /
    • 2020
  • The IPCC (Intergovernmental Panel on Climate Change) recommended the importance of preventive measures against extreme weather, and heat waves are one of the main themes for establishing preventive measures. In this study, we tried to analyze the heat vulnerable areas by considering not only spatial characteristics but also social characteristics. Energy consumption, popu lation density, normalized difference vegetation index, waterfront distance, solar radiation, and road distribution were examined as variables. Then, by selecting a suitable model, SLM (Spatial Lag Model), available variables were extracted. Then, based on the Fuzzy theory, the degree of vulnerability to heat waves was analyzed for each variable, and six variables were superimposed to finally derive the heat vulnerable area. The study site was selected as the Daegu area where the effects of the heat wave were high. In the case of vulnerable areas, it was confirmed that the existing urban areas are mainly distributed in Seogu, Namgu, and Dalseogu of Daegu, which are less affected by waterside and vegetation. It was confirmed that both spatial and social characteristics should be considered in policy support for reducing heat waves in Daegu.

Comparison of Observed Wave Height and Wave Image of Sok-cho Site (속초연안지점의 관측파고와 파영상자료의 비교)

  • Jang, Bok-Jin;Yeo, Woon-Kwang;Lee, Jong-Kook;Park, Kwang-Soon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.4
    • /
    • pp.329-335
    • /
    • 2007
  • The eye measurement to observe the sea surface condition and estimate the wave height has been used in the open sea or the ship. The experts in the eye estimation can measure the wave height very accurately. The Beaufort wind scale is most widely used as a standard index of the eye measurement. However, more definite reference data such as the representative images by each wave heights must be necessary because the appearances and explanations in the Beaufort wind scale are not enough to understand the sea surface condition far the researcher and the public. The modern field data acquisition technique has been developed to measure wave heights, ocean weather data and even images of the sea surface in real-time. In this study, the wireless field image transmitting system for wave heights and images is installed in the real-time ocean measurement system of Chodo light tower near Sokcho city in South Korea. The wave heights and surface images acquired from the real time system in the field are compared with explanations of the Beaufort wind scale. The wave heights and images measured with the precision ultrasonic wave sensor and the scientific sea surface image transmitting system should be helpful to obtain more precise and definite information than the data from the Beaufort wind scale.

EFFECT OF HEAT CURING METHODS ON THE TEMPERATURE HISTORY AND STRENGTH DEVELOPMENT OF SLAB CONCRETE FOR NUCLEAR POWER PLANT STRUCTURES IN COLD CLIMATES

  • Lee, Gun-Che;Han, Min-Cheol;Baek, Dae-Hyun;Koh, Kyung-Taek
    • Nuclear Engineering and Technology
    • /
    • v.44 no.5
    • /
    • pp.523-534
    • /
    • 2012
  • The objective of this study was to experimentally investigate the effect of heat curing methods on the temperature history and strength development of slab concrete exposed to $-10^{\circ}C$. The goal was to determine proper heat curing methods for the protection of nuclear power plant structures against early-age frost damage under adverse (cold) conditions. Two types of methods were studied: heat insulation alone and in combination with a heating cable. For heat curing with heat insulation alone, either sawdust or a double layer bubble sheet (2-BS) was applied. For curing with a combination of heat insulation and a heating cable, an embedded heating cable was used with either a sawdust cover, a 2-BS cover, or a quadruple layer bubble sheet (4-BS) cover. Seven different slab specimens with dimensions of $1200{\times}600{\times}200$ mm and a design strength of 27 MPa were fabricated and cured at $-10^{\circ}C$ for 7 d. The application of sawdust and 2-BS allowed the concrete temperature to fall below $0^{\circ}C$ within 40 h after exposure to $-10^{\circ}C$, and then, the temperature dropped to $-10^{\circ}C$ and remained there for 7 d owing to insufficient thermal resistance. However, the combination of a heating cable plus sawdust or 2-BS maintained the concrete temperature around $5^{\circ}C$ for 7 d. Moreover, the combination of the heating cable and 4-BS maintained the concrete temperature around $10^{\circ}C$ for 7 d. This was due to the continuous heat supply from the heating cable and the prevention of heat loss by the 4-BS. For maturity development, which is an index of early-age frost damage, the application of heat insulation materials alone did not allow the concrete to meet the minimum maturity required to protect against early-age frost damage after 7 d, owing to poor thermal resistance. However, the combination of the heating cable and the heat insulating materials allowed the concrete to attain the minimum maturity level after just 3 d. In the case of strength development, the heat insulation materials alone were insufficient to achieve the minimum 7-d strength required to prevent early-age frost damage. However, the combination of a heating cable and heat insulating materials met both the minimum 7-d strength and the 28-d design strength owing to the heat supply and thermal resistance. Therefore, it is believed that by combining a heating cable and 4-BS, concrete exposed to $-10^{\circ}C$ can be effectively protected from early-age frost damage and can attain the required 28-d compressive strength.

Boundary Line Analysis of Rice Yield Responses to Meteorological Conditions for Yield Prediction II. Verification of Yield Prediction Model (최대경계선을 이용한 벼 수량의 기상반응분석과 수량 예측 II. 수량예측모형 검증)

  • 김창국;한원식;이변우
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.3
    • /
    • pp.164-168
    • /
    • 2002
  • Yield prediction model of rice based on the boundary line analysis of the relationships between rice yield and meteorological conditions during rice growing period was reported in the previous report (Kim et al, 2001). Using the 15-year data of the 20 locations used for the model formulation and of the 12 locations not used, the model was tested for its predictability of location to location, year to year, and variety to variety variation of rice yield. The model predicted reliably the mean yield differences among locations, the yearly yield variation in each location, and the yield variation by variety. However, the model showed relatively lower predictability for the years of cool weather injury especially in mountainous locations. In conclusion, the model using boundary line analysis could be used to predict the yield responses to meteorological conditions during rice growth period and the locational, yearly, and varietal variations of rice yield. And the predictability of the present yield prediction model might be improved by including the boundary line analysis for the other factors such as soil characteristics, fertilization levels, etc.

Pollination Effect and Nesting Behavior of Osmia cornifrons on 'Hongro', Early and 'Fuji', Late-season Apple Cultivars (중생종 '홍로'와 만생종 '후지'사과에서 머리뿔가위벌(Osmia cornifrons)의 영소활동 특성과 화분매개효과)

  • Lee, Kyeong Yong;Lee, Jung Ae;Yoon, Hyung Ju
    • Korean journal of applied entomology
    • /
    • v.60 no.1
    • /
    • pp.123-133
    • /
    • 2021
  • In order to use Osmia cornifrons more effectively in apples, we investigated the pollination effect and nesting activity of O. cornifrons on 'Hongro', the middle-season cultivar, and 'Fuji', the late-season cultivar. There was a significant difference in the nesting activity and pollination effect of O. cornifrons depending on the apple cultivar. The nesting activity, rate of trap nesting, and reproduction in 'Fuji' were 2.5, 1.5, and 3.8 times greater than in 'Hongro', respectively. The pollination effect according to cultivar 'Fuji' was 1.6 times greater than that of 'Hongro' in the central fruit set. In terms of the quality of fruit, the asymmetry index of 'Fuji' was 2.5 times lower than that of 'Hongro', and the number of apple seeds of 'Fuji' was 1.9 times greater than that of 'Hongro'. The main reason for this result was the air temperature. The activity of O. cornifrons was most affected by air temperature (R2 = 0.578). It is expected that the nesting activity and pollination effect are great in 'Fuji' (17.4-24.1℃) when the temperature during the blooming period is higher than that of 'Hongro' (12.5-20.2℃). Our study provides important information on stable apple production for apple cultivators, and can be used as an evidence for changes in flora and insect fauna caused by climate change.

Analysis of trend and variation characteristics of UNEP and MDM climate indices: the case study of Chungcheong-do province (UNEP와 MDM 기후지수의 추세 및 변동 특성 분석: 충청도 지역을 중심으로)

  • Cho, Hyungon;Choi, Kyung-Sook
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.999-1009
    • /
    • 2021
  • As the frequency and intensity of extreme weather events due to climate change are increasing in recent years, it is very important to evaluate and analyze climate conditions to manage and respond to the negative effects of climate change in advance. In this study, the trends and characteristics of regional climate change were analyzed by calculating the climate indices for the Chungcheong Province. Annual and monthly UNEP-MP, UNEP-PM and MDM indices were calculated using daily data from 1973-2020 collected from 10 synoptic meteorological stations operated by the Korea Meteorological Administration. The normality of climate data was analyzed through the KS test, and the climate change trend was analyzed by applying the Spearman and Pearson methods. The Chungcheongnam-do region had a relatively humid climate than the Chungcheongbuk-do region, and the annual climate indices showed a dry climate trend in Cheongju and Chungju, while the climate of Seosan and Buyeo was becoming humid. Based on the monthly trend change analysis, a humid climate trend was observed in summer and autumn, while a dry climate trend was observed in spring and winter. Comparison of climate indices during the past (2001-2010) and the recent (2011-2020) years showed a higher decrease in the average climate indices during the last 10 years and a gradually drying climate change trend was recorded.

A Study on the Combustion Characteristics of the Crown of Pine Trees in the Drying Season (건조기 소나무 수관부 부위별 연소특성에 관한 연구)

  • Hyuk Kwon;Jong Ho Lee
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.4
    • /
    • pp.39-46
    • /
    • 2023
  • Pine trees, which account for 23% of the forested area of the Republic of Korea, are highly vulnerable to fire in comparison to broad-leaved trees due to the presence of consistent water tube sections throughout the year and resin that is composed of approximately 20% oil. In addition, the pattern of forest fires is determined by weather, topographic conditions, and fluctuation in moisture content. Therefore, when fire breaks out in pine tree forests during the dry season (January to March), it is difficult to extinguish, and it quickly spreads. In this study, the combustion characteristics of pine needles, pine cones, and pine branches in the water tube sections of living pine trees were compared and analyzed in accordance with the moisture content as per the ISO 5660-1. The monthly moisture content was analyzed from January to March, and it was found to be the lowest in March, with 53.6% for pine needles, 51.9% for pine branches, and 10.9% for pine cones. In particular, pine cones were more vulnerable to fire as compared to pine needles and pine branches because their moisture content was more than five times lower than that of pine needles and branches. The ignition time, which affects the speed of flame propagation, was the most rapid in March, and the fastest ignition time was for pine cones, at 19 seconds, followed by 34 seconds for pine needles, and 256 seconds for pine branches. The pine branches were the last to be ignited due to the effect of density, according to the thickness and specific gravity of the specimen. The peak heat release rate, which is a measurable index of fire intensity, was analyzed for pine cones and found to be 184.28 kW/m2 , while the mean effective heat of combustion was 19.79 MJ/kg, and the total heat release rate was 39.7 MJ/m2 , and these values were higher than those of pine branches and pine needles. Thus, we determined that the flame propagation speed and fire intensity according to the moisture content can be used to evaluate the risk of fire to the water tube section of pine trees. It is suggested that because of the combustion characteristics of the pine cone in March, that is when the forest is most vulnerable to fires.

Understanding Impact of the Volcanic Eruption of Nishinoshima, Japan on Air Quality in the South Korean Peninsula (일본 니시노시마 화산 분화에 의한 한반도 남부 대기질 영향 분석)

  • Cheolwoo Chang;Sung-Hyo Yun
    • Journal of the Korean earth science society
    • /
    • v.44 no.3
    • /
    • pp.196-209
    • /
    • 2023
  • The Nishinoshima volcano, located 940 km south of Tokyo, experienced an eruption from June to August 2020. The volcanic gas and ash from the eruption of Nishinoshima that occurred at the end of July 2020 was reported to have the potential to affect the Korean Peninsula. In this study, we used Ash3D, a numerical simulation program for volcanic ash dispersion, to investigate the eruption that occurred at 0:00 local time on July 28, 2020, with a volcanic explosivity index of three. The results showed that the volcanic ash cloud reached Okinawa on the morning of July 30, carried by an east wind. It then moved northward and reached Jeju Island on August 1, eventually circulating in a clockwise direction and reaching southern part of the Korean Peninsula on August 2. The concentration of Particulate Matter 10 (PM10), measured at the Jeju Gosan Meteorological Observatory in Jeju Island, increase from August 1. A similar increase in PM10 concentration was observed at the Gudeok Mountain Weather Station in Busan from August 2. These findings suggested that eruption of the Nishinoshima volcano had an impact on the fine dust concentrations at Jeju Island and southern part of the Korean Peninsula.

Evaluation of Growth and Yield on Transplanting time and Plant Density in ItalianRyegrass

  • Yun-Ho Lee;Hyeon-Soo Jang;Jeong-Won Kim;Bo-kyeong Kim;Deauk-Kim;Jong-Tak Youn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.101-101
    • /
    • 2022
  • In recent years, due to climate change, the livestock industry has become more interested in the production of forage crops. In Korea, more than 74% of forage crops are cultivated in winter rice fields. In particular, Italian ryegrass (IRG) is depends on imports for more than 70% of its seeds. In generally, the IRG rapeseed cultivation method involves sowing from early October to mid-October by drill sowing seeding or spot seedling. However, the sowing period is delayed due to frequent rainfall during. And, same period require a lot of seeds. However, raising seedlings and transplanted IRG will overcome weather conditions and reduce the amount of seeds. This study was intended to be applied to the domestic IRG seed industry in the future through growth and quantity evaluation according to transplant time and planting density for the production of good quality IRG seeds in rice paddy fields. In this study, transplanting time (October 20, October 30, November 10) and planting density (50, 70, and 80) were cultivated at the National Institute of Crop Science in 2021. The amount of fertilizer applied was adjusted to (N-P2O5-K2O) 4.5-12-12 (kg/10a), and then 2.2(kg/10a) of nitrogen was added each year. For the growth survey, leaf area, canopy coverage, plant length, and seed yield were investigated. Along with the transplanting time, the plant length was higher on October 20 than on October 30 and November 10. On the other hand, leaf area index changes differed depending on the transplanting time and planting density, and were particularly high on October 20, 80 density and 70 density, but similar on October 30 and November 10. 1000 seed weight showed no difference with transplanting time and planting density. On the other hand, the seed yield was 215(kg/10a) for 80 density on October 20, 211(kg/10a) for 70 density, 118(kg/10a) for 50 density, and 80 density for October 30 and November 10. and 70 density did not differ. On the other hand, the 50 density on October 30 and November 10 were 164(kg/10a) and 147(kg/10a) respectively. As can be seen from this study, the earlier the transplant, the higher the seed yield. However, the 50 density was reduced in yield compared to the 70 density and 80 density.

  • PDF

Analysis of Optimal Index for Heat Morbidity (온열질환자 예측을 위한 최적의 지표 분석)

  • Sanghyuck Kim;Minju Song;Seokhwan Yun;Dongkun Lee
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.1
    • /
    • pp.9-17
    • /
    • 2024
  • The purpose of this study is to select and predict optimal heatwave indices for describing and predicting heat-related illnesses. Regression analysis was conducted using Heat-related illness surveillance system data for a number of heat-related illnesses and meteorological data from the Korea Meteorological Administration's Automatic Weather Station (AWS) for the period from 2021 to 2023. Daily average temperature, daily maximum temperature, daily average Wet Bulb Globe Temperature (WBGT), and daily maximum WBGT values were calculated and analyzed. The results indicated that among the four indicators, the daily maximum WBGT showed the highest suitability with an R2 value of 0.81 and RMSE of 0.98, with a threshold of 29.94 Celsius. During the entire analysis period, there were a total of 91 days exceeding this threshold, resulting in 339 cases of heat-related illnesses. Predictions of heat-related illness cases from 2021 to 2023 using the regression equation for daily maximum WBGT showed an accuracy with less than 10 cases of error annually, demonstrating a high level of precision. Through continuous research and refinement of data and analysis methods, it is anticipated that this approach could contribute to predicting and mitigating the impact of heatwaves.