• Title/Summary/Keyword: Weather Index

Search Result 471, Processing Time 0.026 seconds

A Study on Wintering Microclimate Factors of Evergreen Broad-Leaved Trees, in the Coastal Area of Incheon, Korea (인천해안지역의 난온대성 상록활엽수 겨울철 생장에 영향을 미치는 미기후 요인)

  • Kim, Jung-Chul;Kim, Do-Gyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.5
    • /
    • pp.66-77
    • /
    • 2019
  • This study investigated the feasibility of wintering evergreen broad-leaf trees in the Incheon coastal area through a climate analysis. The coldest monthly mean air temperature ranged from $-2.9^{\circ}C{\sim}-1.6^{\circ}C$. The warmth index of the coastal area of Incheon ranged from $98.89^{\circ}C{\cdot}month-109.03^{\circ}C{\cdot}month$, while the minimum air temperature year ranged from $-13.9^{\circ}C{\sim}-3.6^{\circ}C$. This proved that the Incheon coastal area was not suitable for evergreen broad-leaf trees to grow as the warmth index ranges from $101.0^{\circ}C{\cdot}month{\sim}117.0^{\circ}C{\cdot}month$, and the temperature year-round is $-9.2^{\circ}C$ or higher. This suggests the coastal areas of Incheon is not suitable for the growth of evergreen broad-leaf trees, however some evergreen broad-leaf trees lived in some parts of the area. Wind speed reduction and temperature effect simulations were done using Landschaftsanalyse mit GIS program. As a result of the simulations of wind speed reduction and temperature effects affecting the evergreen broad-leaf trees, it was discovered that a coastal wind velocity of 8.6m/sec was alleviated to be 5m/sec~7m/sec when the wind reached the areas where evergreen broad-leaf trees were present. It was also discovered that species that grew in contact with buildings benefited from a temperature increase of $1.1^{\circ}C{\sim}3.4^{\circ}C$ due to the radiant heat released by the building. Simulation results show that the weather factors affecting the winter growth damages of evergreen broad-leaved trees were wind speed reduction and local warming due to buildings. The wind speed reduction by shielding and local warming effects by buildings have enabled the wintering of evergreen broad-leaved trees. Also, evergreen broad-leaved trees growing in the coastal area of Incheon could be judged to be gradually adapting to low temperatures in winter. This study reached the conclusion that the blockage of wind, and the proximity of buildings, are required for successfully wintering evergreen broad-leaf trees in the coastal area of Incheon.

정지궤도 통신해양기상위성의 기상분야 요구사항에 관하여

  • Ahn, Myung-Hwan;Kim, Kum-Lan
    • Atmosphere
    • /
    • v.12 no.4
    • /
    • pp.20-42
    • /
    • 2002
  • Based on the "Mid to Long Term Plan for Space Development", a project to launch COMeS (Communication, Oceanography, and Meteorological Satellite) into the geostationary orbit is undergoing. Accordingly, KMA (Korea Meteorological Administration) has defined the meteorological missions and prepared the user requirements to fulfill the missions. To make a realistic user requirements, we prepared a first draft based on the ideal meteorological products derivable from a geostationary platform and sent the RFI (request for information) to the sensor manufacturers. Based on the responses to the RFI and other considerations, we revised the user requirement to be a realistic plan for the 2008 launch of the satellite. This manuscript introduces the revised user requirements briefly. The major mission defined in the revised user requirement is the augmentation of the detection and prediction ability of the severe weather phenomena, especially around the Korean Peninsula. The required payload is an enhanced Imager, which includes the major observation channels of the current geostationary sounder. To derive the required meteorological products from the Imager, at least 12 channels are required with the optimum of 16 channels. The minimum 12 channels are 6 wavelength bands used for current geostationary satellite, and additional channels in two visible bands, a near infrared band, two water vapor bands and one ozone absorption band. From these enhanced channel observation, we are going to derive and utilize the information of water vapor, stability index, wind field, and analysis of special weather phenomena such as the yellow sand event in addition to the standard derived products from the current geostationary Imager data. For a better temporal coverage, the Imager is required to acquire the full disk data within 15 minutes and to have the rapid scan mode for the limited area coverage. The required thresholds of spatial resolutions are 1 km and 2 km for visible and infrared channels, respectively, while the target resolutions are 0.5 km and 1 km.

Change in Potential Productivity of Rice around Lake Juam Due to Construction of Dam by SIMRIW (벼 생장모형 SIMRIW를 이용한 주암호 건설에 따른 주변지역의 벼 잠재생산성 변이 추정)

  • 임준택;윤진일;권병선
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.6
    • /
    • pp.729-738
    • /
    • 1997
  • To estimate the change in rice productivity around lake Juam due to construction of artificial lake, growth, yield components and yield of rice were measured at different locations around lake Juam for three years from 1994 to 1996. Automated weather stations(AWS) were installed nearby the experimental paddy fields, and daily maximum, average and minimum temperature, solar radiation, relative humidity, and precipitation were measured for the whole growing period of rice. Plant height, number of tillers, leaf area and shoot dry weight per hill were observed from 8 to 10 times in the interval of 7 days after transplanting. Yield and yield components of rice were observed at the harvest time. Simulation model of rice productivity used in the study was SIMRIW developed by Horie. The observed data of rice at 5 locations in 1994, 3 locations in 1995 and 4 locations in 1996 were inputted in the model to estimate the unknown parameters. Comparisons between observed and predicted values of shoot dry weights, leaf area indices, and rough rice yield were fairly well, so that SIMRIW appeared to predict relatively well the variations in productivity due to variations of climatic factors in the habitat. Climatic elements prior to as well as posterior to dam construction were generated at six locatons around lake Juam for thirty years by the method of Pickering et al. Climatic elements simulated in the study were daily maximum and minimum temperature, and amount of daily solar radiation. The change in rice productivity around lake Juam due to dam construction were estimated by inputting the generated climatic elements into SIMRIW. Average daily maximum temperature after dam construction appeared to be more or less lower than that before dam construction, while average daily minimum temperature became higher after dam construction. Average amount of daily solar radiation became lower with 0.9 MJ $d^{-1}$ after dam construction. As a result of simulation, the average productivity of habitats around lake Juam decreased about 5.6% by the construction of dam.

  • PDF

Very short-term rainfall prediction based on radar image learning using deep neural network (심층신경망을 이용한 레이더 영상 학습 기반 초단시간 강우예측)

  • Yoon, Seongsim;Park, Heeseong;Shin, Hongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1159-1172
    • /
    • 2020
  • This study applied deep convolution neural network based on U-Net and SegNet using long period weather radar data to very short-term rainfall prediction. And the results were compared and evaluated with the translation model. For training and validation of deep neural network, Mt. Gwanak and Mt. Gwangdeoksan radar data were collected from 2010 to 2016 and converted to a gray-scale image file in an HDF5 format with a 1km spatial resolution. The deep neural network model was trained to predict precipitation after 10 minutes by using the four consecutive radar image data, and the recursive method of repeating forecasts was applied to carry out lead time 60 minutes with the pretrained deep neural network model. To evaluate the performance of deep neural network prediction model, 24 rain cases in 2017 were forecast for rainfall up to 60 minutes in advance. As a result of evaluating the predicted performance by calculating the mean absolute error (MAE) and critical success index (CSI) at the threshold of 0.1, 1, and 5 mm/hr, the deep neural network model showed better performance in the case of rainfall threshold of 0.1, 1 mm/hr in terms of MAE, and showed better performance than the translation model for lead time 50 minutes in terms of CSI. In particular, although the deep neural network prediction model performed generally better than the translation model for weak rainfall of 5 mm/hr or less, the deep neural network prediction model had limitations in predicting distinct precipitation characteristics of high intensity as a result of the evaluation of threshold of 5 mm/hr. The longer lead time, the spatial smoothness increase with lead time thereby reducing the accuracy of rainfall prediction The translation model turned out to be superior in predicting the exceedance of higher intensity thresholds (> 5 mm/hr) because it preserves distinct precipitation characteristics, but the rainfall position tends to shift incorrectly. This study are expected to be helpful for the improvement of radar rainfall prediction model using deep neural networks in the future. In addition, the massive weather radar data established in this study will be provided through open repositories for future use in subsequent studies.

Analysis of the Long-Range Transport Contribution to PM10 in Korea Based on the Variations of Anthropogenic Emissions in East Asia using WRF-Chem (WRF-Chem 모델을 활용한 동아시아의 인위적 배출량 변동에 따른 한국 미세 먼지 장거리 수송 기여도 분석)

  • Lee, Hyae-Jin;Cho, Jae-Hee
    • Journal of the Korean earth science society
    • /
    • v.43 no.2
    • /
    • pp.283-302
    • /
    • 2022
  • Despite the nationwide COVID-19 lockdown in China since January 23, 2020, haze days with high PM10 levels of 88-98 ㎍ m-3 occurred on February 1 and 2, 2020. During these haze days, the East Asian region was affected by a warm and stagnant air mass with positive air temperature anomalies and negative zonal wind anomalies at 850 hPa. The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) was used to analyze the variation of regional PM10 aerosol transport in Korea due to decreased anthropogenic emissions in East Asia. The base experiment (BASE), which applies the basic anthropogenic emissions in the WRF-Chem model, and the control experiment (CTL) applied by reducing the anthropogenic emission to 50%, were used to assess uncertainty with ground-based PM10 measurements in Korea. The index of agreement (IOA) for the CTL simulation was 0.71, which was higher than that of BASE (0.67). A statistical analysis of the results suggests that anthropogenic emissions were reduced during the COVID-19 lockdown period in China. Furthermore, BASE and CTL applied to zero-out anthropogenic emissions outside Korea (BASE_ZEOK and CTL_ZEOK) were used to analyze the variations of regional PM10 aerosol transport in Korea. Regional PM10 transport in CTL was reduced by only 10-20% compared to BASE. Synthetic weather variables may be another reason for the non-linear response to changes in the contribution of regional transport to PM10 in Korea with the reduction of anthropogenic emissions in East Asia. Although the regional transport contribution of other inorganic aerosols was high in CTL (80-90%), sulfate-nitrate-ammonium (SNA) aerosols showed lower contributions of 0-20%, 30-60%, and 30-60%, respectively. The SNA secondary aerosols, particularly nitrates, presumably declined as the Chinese lockdown induced traffic.

A Study on Ecological Niche of Pinus densiflora Forests according to the Environmental Factors (환경인자에 따른 소나무림의 생태적 지위에 관한 연구)

  • Seo, Dong-Jin;Oh, Chang-Young;Woo, Kwan-Soo;Lee, Jae-Cheon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.3
    • /
    • pp.153-160
    • /
    • 2013
  • This study was conducted to investigate the effect of ecological factors affecting Pinus densiflora forest distribution associated with climate change in the future. Ecological niche is used as a method to quantify the position occupied in biological communities, space, influence and all ecological factors. Ecological niche breadth was analyzed on meteorological and growth factors of P. densiflora. Nine sites (i.e., Gangneung, Jeongseon, Pyeongchang, Hamyang, Bonghwa, Yeongyang, Uljin, Uiseong and Boseong) were selected to set $20m{\times}20m$ quadrat from September to October 2010. The height, DBH, clearlength, crown width and basal area were measured at each quadrat and used as growth factors. In addition, the measured values from the closest weather stations of each survey area of the maximum, mean and minimum temperature, humidity and precipitation were used as meteorological factors. The ecological niche breadth of the five meteorological factors except humidity was low. It is considered that precipitation could effect on the distribution of P. densiflora forest. In particular, maximum temperature showed low ecological niche breadth less than 0.4 in most of the survey areas. However, the ecological niche breadth of the five growth factors was high in all survey areas.

Vulnerability Analysis in the Nakdong River Basin for the Utilization of Flood Risk Mapping (홍수위험지도 활용을 위한 낙동강 유역에서의 홍수취약도 분석)

  • Kim, Tae-Hyung;Han, Kun-Yeun;Cho, Wan-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.203-222
    • /
    • 2011
  • The characteristics of flood damages have been increasingly strengthened and take the form of unpredictable and unusual weather phenomena caused by climate change and climate anomalies. To prevent inundation damage caused by breach of hydraulic structure such as dam or levee, and trouble of drainage of inner basin, the prediction necessity of flood inundation area, flood risk analysis, and drawing flood risk maps have been on the rise, and the national flood risk maps have been produced. In this study, the quantitative flood vulnerability analysis was performed, which represents population living within flood-affected areas, types of economic activities, facilities affected by flood, in order to extend flood risk mapping from simple hazard concept into risk based idea. By applying it to Nakdong River basin, the flood vulnerability indices were estimated to draw flood risk maps subdivided into administrative districts. The result of this study can be applied to establish the disaster prevention measures and priority decision of disaster prevention project.

Water Use Efficiency in Rice(Oryza sativa L.) Plant Canopy (벼 군락(群落)의 생육시기별(生育時期別) 물 이용(利用) 효율(效率)에 관(關)한 연구(硏究))

  • Kim, Jung-Wook;Lee, Jeong-Taek;Kang, Byeung-Hoa;Yun, Seong-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 1995
  • This experiment was carried out to clarify the evapotranspiration and water use efficiency in rice plant canopy. Two rice cultivars, Daechungbyo(japonica type) and Samgangbyo(Tongil) were planted on the field of Suwon Weather Forecast Station in 1989. Evapotranspiration, dry matter production and leaf area of rice plant were measured to investigate the water use efficiency. There was significant correlation between cumulative evapotranspiration and dry matter production of aboveground. The parameter of linear regression was 4.13. The ratio of cumulative top dry matter production per cumulative evapotranspiration was increased until $5.5{\sim}5.9$ leaf area index. The de Wit's "m" value revealed maximum record at heading-flowering stage. At the harvest, the values were ranged from 175.5 to 191.7. The parameter of cumulative solar radiation to dry matter production was $1.011{\sim}1.248$. The evapotranspiration ratio(g.water/g.DW) of Samgangbyo(278) was higher than that of Daechungbyo (299.9). The efficiency of evapotranspiration(g.DW/g. water) was 1.58 in Daechungbyo and 1.98 in Samgangbyo.

  • PDF

Impact of Climate Change Induced by the Increasing Atmospheric $CO_2$Concentration on Agroclimatic Resources, Net Primary Productivity and Rice Yield Potential in Korea (대기중 $CO_2$농도 증가에 따른 기후변화가 농업기후자원, 식생의 순 1차 생산력 및 벼 수량에 미치는 영향)

  • 이변우;신진철;봉종헌
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.2
    • /
    • pp.112-126
    • /
    • 1991
  • The atmospheric carbon dioxide concentration is ever-increasing and expected to reach about 600 ppmv some time during next century. Such an increase of $CO_2$ may cause a warming of the earth's surface of 1.5 to 4.5$^{\circ}C$, resulting in great changes in natural and agricultural ecosystems. The climatic scenario under doubled $CO_2$ projected by general circulation model of Goddard Institute for Space Studies(GISS) was adopted to evaluate the potential impact of climate change on agroclimatic resources, net primary productivity and rice productivity in Korea. The annual mean temperature was expected to rise by 3.5 to 4.$0^{\circ}C$ and the annual precipitation to vary by -5 to 20% as compared to current normal climate (1951 to 1980), resulting in the increase of possible duration of crop growth(days above 15$^{\circ}C$ in daily mean temperature) by 30 to 50 days and of effective accumulated temperature(EAT=∑Ti, Ti$\geq$1$0^{\circ}C$) by 1200 to 150$0^{\circ}C$. day which roughly corresponds to the shift of its isopleth northward by 300 to 400 km and by 600 to 700 m in altitude. The hydrological condition evaluated by radiative dryness index (RDI =Rn/ $\ell$P) is presumed to change slightly. The net primary productivity under the 2$\times$$CO_2$ climate was estimated to decrease by 3 to 4% when calculated without considering the photosynthesis stimulation due to $CO_2$ enrichment. Empirical crop-weather model was constructed for national rice yield prediction. The rice yields predicted by this model under 2 $\times$ $CO_2$ climatic scenario at the technological level of 1987 were lower by 34-43% than those under current normal climate. The parameters of MACROS, a dynamic simulation model from IRRI, were modified to simulate the growth and development of Korean rice cultivars under current and doubled $CO_2$ climatic condition. When simulated starting seedling emergence of May 10, the rice yield of Hwaseongbyeo(medium maturity) under 2 $\times$ $CO_2$ climate in Suwon showed 37% reduction compared to that under current normal climate. The yield reduction was ascribable mainly to the shortening of vegetative and ripening period due to accelerated development by higher temperature. Any simulated yields when shifted emergence date from April 10 to July 10 with Hwaseongbyeo (medium maturity) and Palgeum (late maturity) under 2 $\times$ $CO_2$ climate did not exceed the yield of Hwaseongbyeo simulated at seedling emergence on May 10 under current climate. The imaginary variety, having the same characteristics as those of Hwaseongbyeo except growth duration of 100 days from seedling emergence to heading, showed 4% increase in yield when simulated at seedling emergence on May 25 producing the highest yield. The simulation revealed that grain yields of rice increase to a greater extent under 2$\times$ $CO_2$-doubled condition than under current atmospheric $CO_2$ concentration as the plant type becomes more erect.

  • PDF

Enhancement of Ozone and Carbon Monoxide Associated with Upper Cut-off Low during Springtime in East Asia

  • Moon, Yun-Seob;Drummond, James R.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.5
    • /
    • pp.475-489
    • /
    • 2010
  • In order to verify the enhancement of ozone and carbon monoxide (CO) during springtime in East Asia, we investigated weather conditions and data from remote sensors, air quality models, and air quality monitors. These include the geopotential height archived from the final (FNL) meteorological field, the potential vorticity and the wind velocity simulated by the Meteorological Mesoscale Model 5 (MM5), the back trajectory estimated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model, the total column amount of ozone and the aerosol index retrieved from the Total Ozone Mapping Spectrometer (TOMS), the total column density of CO retrieved from the Measurement of Pollution in the Troposphere (MOPITT), and the concentration of ozone and CO simulated by the Model for Ozone and Related Chemical Tracers (MOZART). In particular, the total column density of CO, which mightoriginate from the combustion of fossil fuels and the burning of biomass in China, increased in East Asia during spring 2000. In addition, the enhancement of total column amounts of ozone and CO appeared to be associated with both the upper cut-off low near 500 hPa and the frontogenesis of a surface cyclone during a weak Asian dust event. At the same time, high concentrations of ozone and CO on the Earth's surface were shown at the Seoul air quality monitoring site, located at the surface frontogenesis in Korea. It was clear that the ozone was invaded by the downward stretched vortex anomalies, which included the ozone-rich airflow, during movement and development of the cut-off low, and then there was the catalytic photochemical reaction of ozone precursors on the Earth's surface during the day. In addition, air pollutants such as CO and aerosol were tracked along both the cyclone vortex and the strong westerly as shown at the back trajectory in Seoul and Busan, respectively. Consequently, the maxima of ozone and CO between the two areas showed up differently because of the time lag between those gases, including their catalytic photochemical reactions together with the invasion from the upper troposphere, as well as the path of their transport from China during the weak Asian dust event.