• Title/Summary/Keyword: Weather Clutter Received Signal

Search Result 6, Processing Time 0.018 seconds

Improvement of Detection Performance of a Ground Radar in the Weather Clutter Using Radar-Received-Signal Analysis (레이다 수신 신호 분석을 이용한 기상 클러터 환경 내 지상 레이다 탐지성능 개선)

  • Oh, Hyun-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.79-87
    • /
    • 2019
  • Radar detection range is decreased with an increase in the noise levels and detection thresholds in adaptive CFAR of a radar signal processor to the weather clutter reflection signal in the rain. When a high-velocity plot is generated in weather clutter, what are detected are not targets but false plots. Detection opportunity is reduced by radar time resource consumption from additional confirmations regarding the false plots. In this paper, the received signals are saved using a radar-received signal storage device. Based on the analysis of the received signals from weather clutter, the influence of the rainfall reflection has been mitigated by front-end attenuation of the signal processor. The improvement in the detection performance is verified through received signal and simulation results.

Analysis of Clutter Effects in a Weather Radar (기상 레이다에서의 클러터 영향 분석)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1641-1648
    • /
    • 2016
  • A weather radar estimates Doppler frequency and width of Doppler spectrum from the received weather signal which represents the return echoes from rain or dust particles in a corresponding area. These estimates are very important parameters since they are directly related to precipitation, wind velocity and degree of turbulence. Therefore, these estimated values should be highly reliable to obtain accurate weather information. However, the echoes of a weather radar include both the weather signal and the clutter which occurred from ground reflection or moving objects, etc. The existence of the clutter in the echoes may cause serious errors in the estimation of weather-related parameters. Therefore, in this paper, models are developed to represent the weather signal and the clutter for the purpose of analyzing estimation errors caused by the strong clutter echoes. Using these models, various return echoes according to the weather signal and clutter power are simulated to analyze the effects of the clutter.

Analysis of Phase Noise Effects in a Short Range Weather Radar (단거리 기상 레이다에서의 위상 잡음 영향 분석)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.8
    • /
    • pp.1090-1098
    • /
    • 2018
  • Many short range weather radars with the low elevation search capability are needed for analysis and prediction of unusual weather changes or rainfall phenomena which occurs regionally. However, due to the characteristics of low elevation electromagnetic wave beam, it is highly probable that the received weather signals of these radars are seriously contaminated by the ground clutter. Therefore, the filter removing low Doppler frequency band is generally used to mitigate this problem. However, the phase noise in a radar system may limit the removal of the strong clutter and this may cause serious problems in estimating weather parameters because of the remaining clutter. Therefore, in this paper, the characteristics of phase noise in a radar system are investigated and the effects of the system phase noise are analyzed in the improvement of signal to clutter ratio for the strong clutter environment such as a short and low-elevated weather radar.

Performance Analysis on Terrain-Adaptive Clutter Map Algorithm for Ground Clutter Rejection of Weather Radar (기상 레이다의 지형 클러터 제거를 위한 지형적응 클러터 맵 알고리듬 성능분석)

  • Kim, Hye-Ri;Jung, Jung-Soo;Kwag, Young-Kil;Kim, Ji-Won;Kim, Ji-Hyeon;Ko, Jeong-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1292-1299
    • /
    • 2014
  • Weather radar systems can provide weather information of the ground, sea, and air in extensive spatial coverage in near real time. However, it becomes problematic when ground clutter signal exists around precipitation because strong signals of ground can cause a false precipitation report. A large percentage of land coverage of Korea consists of mountainous regions where ground clutter needs to be mitigated for more accurate prediction. Thus, it is considered necessary to introduce a new suitable ground clutter removal technique specifically adequate for Korea. In this paper, the C-Map(Clutter Map) method using raw radar signals is proposed for removing ground clutter using a terrain-adaptive clutter map. A clutter map is generated using raw radar signals(I/Q) of clear days, then it is subtracted from received radar signals in frequency domain. The proposed method is applied to the radar data acquired from Sobaeksan rain radar and the result shows that the clutter rejection ratio is about 91.17 %.

Rainfall Estimation by X-band Marine Radar (X밴드 선박용 레이더를 이용한 강우 추정)

  • Kim, Kwang-Ho;Kwon, Byung-Hyuk;Kim, Min-Seong;Kim, Park-Sa;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.4
    • /
    • pp.695-704
    • /
    • 2018
  • The rainfall cases were identified by rainfall estimation techniques which were developed by using X - band marine radar. A digital signal converter was used to convert the signal received from the marine radar into digital reflectivity information. The ground clutter signal was removed and the errors caused by beam attenuation and beam volume changes were corrected. The reflectivity showed a linear relationship with the rain gauge rainfall. Quantitative rainfall was estimated by converting the radar signal into an cartesian coordinate system. When the rainfall was recorded more than $5mm\;hr^{-1}$ at three automatic weather stations, the rain cell distribution on the marine radar was consistent with that of the weather radar operated by Korea meteorological Adminstration.

Design of Ground Clutter Prevention Fences for Radar Wind Profiler (연직바람 관측장비를 위한 지형 클러터 방지 펜스 설계)

  • WooJae Jung;JongChul Lee;JungIk Jeon;HyeongKi Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.241-249
    • /
    • 2022
  • This paper discusses the design of a ground clutter prevention fence for a radar wind profiler (RWP). The design point of the clutter fence is to improve the quality of the received signal by removing the non-weather clutter coming from the side. In this paper, a clutter prevention fence composed of a metallash mesh around the RWP is proposed, and the phase center of the antenna, the length, and height of the down fence, and the height and slop of the top fence through M&S are designed. The designed ground clutter prevention fence and 256 active phase array antennas were used as basic data. The effectiveness of the design was confirmed by a simulation. The side lobe in the ±90° direction was reduced by more than 30dB depending on the presence or absence of the designed ground clutter prevention fence. The fence was manufactured by 3D modeling, and the clutter shielding performance of approximately 20dB or more on the side of the antenna (±90°) was confirmed by applying it to the currently operated RWP.