• Title/Summary/Keyword: Wearables

Search Result 42, Processing Time 0.025 seconds

How to Enhance Perceived Usefulness, Ease of Use, and Fit of Wearables: An Exploratory Study about the Physical Attributes of Smart Wristbands and Smartwatches

  • Shim, Soo In;Yu, Heejeong
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.302-309
    • /
    • 2023
  • Wearable devices, attached to the human body, track and enhance users' activities, health, and communication. Therefore, considering ergonomic factors in product design is crucial. However, previous research has somewhat overlooked the importance of integrating ergonomic design elements into a broad spectrum of design factors. This study aims to examine the impact of physical attributes inherent in smart wristbands and smartwatches on the perceived functional value, specifically, perceived usefulness, ease of use, and fit. A survey was conducted among 289 US adults who had experience using smart wristbands or smartwatches. The collected data were analyzed using descriptive statistics, factor analysis, Cronbach's alpha, t-test, MANOVA, and regression analysis in SPSS version 29. The results showed that the shape of the front display significantly influenced perceived ease of use, and the product's weight had a substantial impact on both perceived ease of use and fit. Furthermore, distinct technical features on the front display had varied effects on perceived usefulness, ease of use, and fit. Notably, the presence of activity tracking, alarm, and calendar functionalities led to distinct differences in ease of use and fit. Features such as distance tracking, phone call, social media notifications, text messaging, and time display functions showed significant influences on the perception of fit. These findings provide insights into the physical values of smart wristbands and smartwatches as perceived by users.

Digital Therapeutics for Obesity Care (비만 관리를 위한 디지털 치료제)

  • Seo, Yoo Bin
    • Archives of Obesity and Metabolism
    • /
    • v.1 no.2
    • /
    • pp.47-52
    • /
    • 2022
  • Digital therapeutics (DTx) are emerging as a novel solution to improve lifestyle and prevent non-communicable diseases. Obesity is a complex, multi-factorial, chronic condition that requires patient-centered lifestyle modification. DTx, such as mobile applications and wearables, may offer easily accessible, efficient, and personalized care in the field of obesity and metabolic diseases. Yet, there is controversy over its clinical usefulness. This review will provide a comprehensive overview of DTx, including its potential role and current limitation in obesity care, based on recent literature.

Heterogeneous Sensor Data Analysis Using Efficient Adaptive Artificial Neural Network on FPGA Based Edge Gateway

  • Gaikwad, Nikhil B.;Tiwari, Varun;Keskar, Avinash;Shivaprakash, NC
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.4865-4885
    • /
    • 2019
  • We propose a FPGA based design that performs real-time power-efficient analysis of heterogeneous sensor data using adaptive ANN on edge gateway of smart military wearables. In this work, four independent ANN classifiers are developed with optimum topologies. Out of which human activity, BP and toxic gas classifier are multiclass and ECG classifier is binary. These classifiers are later integrated into a single adaptive ANN hardware with a select line(s) that switches the hardware architecture as per the sensor type. Five versions of adaptive ANN with different precisions have been synthesized into IP cores. These IP cores are implemented and tested on Xilinx Artix-7 FPGA using Microblaze test system and LabVIEW based sensor simulators. The hardware analysis shows that the adaptive ANN even with 8-bit precision is the most efficient IP core in terms of hardware resource utilization and power consumption without compromising much on classification accuracy. This IP core requires only 31 microseconds for classification by consuming only 12 milliwatts of power. The proposed adaptive ANN design saves 61% to 97% of different FPGA resources and 44% of power as compared with the independent implementations. In addition, 96.87% to 98.75% of data throughput reduction is achieved by this edge gateway.

Fabrication of Soft Textile Actuators Using NiTi Linear Shape Memory Alloy and Measurement of Dynamic Properties for a Smart Wearable (스마트 웨어러블용 NiTi계 선형 형상기억합금을 이용한 소프트 텍스타일 액추에이터 제작 및 동적 특성 측정)

  • Kim, Sang Un;Kim, Sang Jin;Kim, Jooyong
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.6
    • /
    • pp.1154-1162
    • /
    • 2020
  • In this study, the soft textile actuator is produced for a smart wearable with the shape memory effects from linear shape memory alloys of Nickel and Titanium using the driving force through the fabrication process. The measurement model was designed to measure dynamic characteristics. The heating method, and memory shape of the linear shape memory alloy were set to measure the operating temperature. A shape memory alloy at 40.13℃, was used to heat the alloy with a power supply for the selective operation and rapid reaction speed. The required amount of current was obtained by calculating the amount of heat and (considering the prevention of overheating) set to 1.3 A. The fabrication process produced a soft textile actuator using a stitching technique for linear shape memory alloys at 0.5 mm intervals in the general fabric. The dynamic characteristics of linear shape memory alloys and actuators were measured and compared. For manufactured soft textile actuators, up to 0.8 N, twice the force of the single linear shape memory alloy, 0.38 N, and the response time was measured at 50 s.

Collocated Wearable Interaction for Audio Book Application on Smartwatch and Hearables

  • Yoon, Hyoseok;Son, Jangmi
    • Journal of Multimedia Information System
    • /
    • v.7 no.2
    • /
    • pp.107-114
    • /
    • 2020
  • This paper proposes a wearable audio book application using two wearable devices, a smartwatch and a hearables. We review requirements of what could be a killer wearable application and design our application based on these elicited requirements. To distinguish our application, we present 7 scenarios and introduce several wearable interaction modalities. To show feasibility of our approach, we design and implement our proof-of-concept prototype on Android emulator as well as on a commercial smartwatch. We thoroughly address how different interaction modalities are designed and implemented in the Android platform. Lastly, we show latency of the multi-modal and alternative interaction modalities that can be gracefully handled in wearable audio application use cases.

Design of a physical layer of IEEE 802.15.4q TASK for IoT (IoT를 위한 IEEE 802.15.4q 기반 TASK 물리 계층 설계)

  • Kim, Sunhee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.11-19
    • /
    • 2020
  • IoT has been consistently used in various fields such as smart home, wearables, and healthcare. Since IoT devices are small terminals, relatively simple wireless communication protocols such as IEEE 802.15.4 and ISO 18000 series are used. In this paper, we designed the 802.15.4q 2.4 GHz TASK physical layer. Physical protocol data unit of TASK supports bit-level interleaving and shortened BCH encoding. It is spread by unique ternary sequences. There are four spreading factors to choose the data rate according to the communication channel environment. The TASK physical layer was designed using verilog-HDL and verified through the loop-back test of the transceiver. The designed TASK physical layer was implemented in a fpga and tested using MAXIM RFICs. The PER was about 0% at 10 dB SNR. It is expected to be used in small, low power IoT applications.

Detection of Hand Gesture and its Recognition for Wearable Applications in IoMTW (IoMTW 에서의 웨어러블 응용을 위한 손 제스처 검출 및 인식)

  • Yang, Anna;Hong, Jeong Hun;Kang, Han;Chun, Sungmoon;Kim, Jae-Gon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.11a
    • /
    • pp.33-35
    • /
    • 2016
  • 손 제스처는 스마트 글라스 등 웨어러블 기기의 NUI(Natural User Interface)를 구현하기 위한 수단으로 각광받고 있다. 최근 MPEG 에서는 IoT(Internet of Things) 및 웨어러블 환경에서의 미디어 소비를 지원하기 위한 IoMTW(Internet of Media-Things and Wearables) 표준화를 진행하고 있다. 본 논문에서는 손 제스처를 웨어러블 기기의 NUI 로 사용하여 웨어러블 기기 제어 및 미디어 소비를 제어하기 위한 손 제스처 검출과 인식 기법를 제시한다. 제시된 기법은 스테레오 영상으로부터 깊이 정보와 색 정보를 이용하여 손 윤곽선을 검출하여 이를 베지어(Bezier) 곡선으로 표현하고, 표현된 손 윤곽선으로부터 손가락 수 등의 특징을 바탕으로 제스처를 인식한다.

  • PDF

Current status and future direction of digital health in Korea

  • Shin, Soo-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.311-315
    • /
    • 2019
  • Recently, digital health has gained the attention of physicians, patients, and healthcare industries. Digital health, a broad umbrella term, can be defined as an emerging health area that uses brand new digital or medical technologies involving genomics, big data, wearables, mobile applications, and artificial intelligence. Digital health has been highlighted as a way of realizing precision medicine, and in addition is expected to become synonymous with health itself with the rapid digitization of all health-related data. In this article, we first define digital health by reviewing the diverse range of definitions among academia and government agencies. Based on these definitions, we then review the current status of digital health, mainly in Korea, suggest points that are missing from the discussion or ought to be added, and provide future directions of digital health in clinical practice by pointing out certain key points.

Remote Reading of Surgical Monitor's Physiological Readings: An Image Processing Approach

  • Weerathunga, Haritha;Vidanage, Kaneeka
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.308-314
    • /
    • 2022
  • As a result of the global effect of infectious diseases like COVID-19, remote patient monitoring has become a vital need. Surgical ICU monitors are attached around the clock for patients in critical care. Most ICU monitor systems, on the other hand, lack an output port for transferring data to an auxiliary device for post-processing. Similarly, strapping a slew of wearables to a patient for remote monitoring creates a great deal of discomfort and limits the patient's mobility. Hence, an unique remote monitoring technique for the ICU monitor's physiologically vital readings has been presented, recognizing this need as a research gap. This mechanism has been put to the test in a variety of modes, yielding an overall accuracy of close to 90%.

Analysis of Intermediary Roles and Technical Components for Smartglass-Assisted Interactive Remote Collaboration

  • Yoon, Hyoseok;Kim, Siyeon;Oh, Haneol;Lim, Hong Ji
    • Journal of Multimedia Information System
    • /
    • v.8 no.4
    • /
    • pp.295-300
    • /
    • 2021
  • Recent advances in Internet-of-Things and wearable computing have established computationally sufficient infrastructure to remove the barriers of physical locations. The recent COVID-19 pandemic has accelerated the use of remote collaboration, work-from-home, teleconferencing, online education, digital twin, and metaverse enriched with various configurations of augmented reality, virtual reality, mixed reality, and extended reality. Beyond specialized niche wearable applications in the medical and entertainment domains, we aim to identify the underlying characteristics of smartglass-enabled killer applications for everyday use. In this paper, we analyze intermediary roles in remote collaboration consisting of authoritative supervisors, synergetic collaborators, and speculative explorers. We also propose technical components for smartglass-assisted interactive remote collaboration composed of personal tracking, teleconference, and interaction components. More specifically, the application tasks of each intermediary role and objectives of three functional components are defined and elaborated.