• Title/Summary/Keyword: Wearable sensor device

Search Result 151, Processing Time 0.026 seconds

Smart Helmet for Vital Sign-Based Heatstroke Detection Using Support Vector Machine (SVM 이용한 다중 생체신호기반 온열질환 감지 스마트 안전모 개발)

  • Jaemin, Jang;Kang-Ho, Lee;Subin, Joo;Ohwon, Kwon;Hak, Yi;Dongkyu, Lee
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.433-440
    • /
    • 2022
  • Recently, owing to global warming, average summer temperatures are increasing and the number of hot days is increasing is increasing, which leads to an increase in heat stroke. In particular, outdoor workers directly exposed to the heat are at higher risk of heat stroke; therefore, preventing heat-related illnesses and managing safety have become important. Although various wearable devices have been developed to prevent heat stroke for outdoor workers, applying various sensors to the safety helmets that workers must wear is an excellent alternative. In this study, we developed a smart helmet that measures various vital signs of the wearer such as body temperature, heart rate, and sweat rate; external environmental signals such as temperature and humidity; and movement signals of the wearer such as roll and pitch angles. The smart helmet can acquire the various data by connecting with a smartphone application. Environmental data can check the status of heat wave advisory, and the individual vital signs can monitor the health of workers. In addition, we developed an algorithm that classifies the risk of heat-related illness as normal and abnormal by inputting a set of vital signs of the wearer using a support vector machine technique, which is a machine learning technique that allows for rapid binary classification with high reliability. Furthermore, the classified results suggest that the safety manager can supervise the prevention of heat stroke by receiving feedback from the control system.

A Study on Wearable Emotion Monitoring System Under Natural Conditions Applying Noncontact Type Inductive Sensor (자연 상태에서의 인간감성 평가를 위한 비접촉식 인덕티브 센싱 기반의 착용형 센서 연구)

  • Hyun-Seung Cho;Jin-Hee Yang;Sang-Yeob Lee;Jeong-Whan Lee;Joo-Hyeon Lee;Hoon Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.3
    • /
    • pp.149-160
    • /
    • 2023
  • This study develops a time-varying system-based noncontact fabric sensor that can measure cerebral blood-flow signals to explore the possibility of brain blood-signal detection and emotional evaluation. The textile sensor was implemented as a coil-type sensor by combining 30 silver threads of 40 deniers and then embroidering it with the computer machine. For the cerebral blood-flow measurement experiment, subjects were asked to attach a coil-type sensor to the carotid artery area, wear an electrocardiogram (ECG) electrode and a respiration (RSP) measurement belt. In addition, Doppler ultrasonography was performed using an ultrasonic diagnostic device to measure the speed of blood flow. The subject was asked to wear Meta Quest 2, measure the blood-flow change signal when viewing the manipulated image visual stimulus, and fill out an emotional-evaluation questionnaire. The measurement results show that the textile-sensor-measured signal also changes with a change in the blood-flow rate signal measured using the Doppler ultrasonography. These findings verify that the cerebral blood-flow signal can be measured using a coil-type textile sensor. In addition, the HRV extracted from ECG and PLL signals (textile sensor signals) are calculated and compared for emotional evaluation. The comparison results show that for the change in the ratio because of the activation of the sympathetic and parasympathetic nervous systems due to visual stimulation, the values calculated using the textile sensor and ECG signals tend to be similar. In conclusion, a the proposed time-varying system-based coil-type textile sensor can be used to study changes in the cerebral blood flow and monitor emotions.

Design of Bowing-Activity Monitoring and Automatic Detection System Using 3-Axis Accelerometer (3축-가속도 센서를 이용한 배례(拜禮)동작 모니터링 및 자동검출 시스템 설계)

  • Lee, Young-Jae;Lee, Pil-Jae;Cha, Ji-Young;Sunoo, Sub;Hwang, Jin-Sang;Lee, Jeong-Whan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1150-1158
    • /
    • 2010
  • In this paper, a new reliable portable activity monitoring device implemented with the buddhist-style bowing activity and walking step detection algorithm, is presented. In order to monitor the bowing and walking activities, miniaturized 3-axis accelerometer sensor with the sensitivity of 800 mV/g was used. After initial signal conditioning, vector magnitude of accelerometer signals was calculated. Syntactic peak detection method was used in order to feature points. All signal processing algorithms were implemented in ultra-low power microcontroller MSP430 with double precision floating point arithmetic. For evaluation, 19 young man($24.22\pm5.22$ yrs) and woman($22.28\pm2.72$ yrs) were involved. The accuracy of the proposed algorithms were 98.91 %($\pm0.011$) for walking step detection and 98.25 %($\pm0.023$) for buddhist-style bowing activity. Comparing to the commercialized pedometer accuracy, 87.1 %($\pm0.058$), the proposed walking step detection algorithms show more reliable accuracy.

Technology of Flexible Semiconductor/Memory Device (유연 반도체/메모리 소자 기술)

  • Ahn, Jong-Hyun;Lee, Hyouk;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.1-9
    • /
    • 2013
  • Recently flexible electronic devices have attracted a great deal of attention because of new application possibilities including flexible display, flexible memory, flexible solar cell and flexible sensor. In particular, development of flexible memory is essential to complete the flexible integrated systems such as flexible smart phone and wearable computer. Research of flexible memory has primarily focused on organic-based materials. However, organic flexible memory has still several disadvantages, including lower electrical performance and long-term reliability. Therefore, emerging research in flexible electronics seeks to develop flexible and stretchable technologies that offer the high performance of conventional wafer-based devices as well as superior flexibility. Development of flexible memory with inorganic silicon materials is based on the design principle that any material, in sufficiently thin form, is flexible and bendable since the bending strain is directly proportional to thickness. This article reviews progress in recent technologies for flexible memory and flexible electronics with inorganic silicon materials, including transfer printing technology, wavy or serpentine interconnection structure for reducing strain, and wafer thinning technology.

Development and Utilization of Smart Festival Costumes for Korean Traditional Costumes and Chinese Traditional Costumes (한국과 중국의 전통복식을 이용한 스마트 축제의상의 개발 및 활용)

  • Kim, Hee-Sook;Ko, Jooyoung;Yi, Wang;Kim, Suhyun;Lim, Hyeong-Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.1
    • /
    • pp.70-78
    • /
    • 2019
  • The smart festival costume developed in this study maximizes the design elements by attaching electronic device to clothing, and uses voice, movement, and light sensor to utilize as expression elements. In addition, as a way to maximize cultural exchanges between Korea and China, smart festival costume was developed by applying smart clothing technology to the traditional costumes of both countries. and it was exhibited for 10 days at the 'Andong International Mask Dance Festival 2018'. The smart festival costume has the effect of multiplying the dynamism and excitement of the festival by the use of colorful lighting and it has been evaluated that the experience of wearing traditional costume of both countries contributes greatly to promote international cultural exchange. However, since smart clothing is inconvenient to wear due to the use of electronic products, meticulous research for consumer safety is required for practical use. Smart devices is expected to utilize for the development of traditional culture resources and the fashion industry in the future.

Fabrication and Characterization of a Flexible PVDF Fiber-based Polymer Composite for High-performance Energy Harvesting Devices

  • Nguyen, Duc-Nam;Moon, Wonkyu
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.205-215
    • /
    • 2019
  • A flexible polyvinylidene fluoride (PVDF)/polydimethylsiloxane (PDMS) composite prototype with high piezoelectricity and force sensitivity was constructed, and its huge potential for applications such as biomechanical energy harvesting, self-powered health monitoring system, and pressure sensors was proved. The crystallization, piezoelectric, and electrical properties of the composites were characterized using an X-ray diffraction (XRD) experiment and customized experimental setups. The composite can sustain up to 100% strain, which is a huge improvement over monolithic PVDF fibers and other PVDF-based composites in the literature. The Young's modulus is 1.64 MPa, which is closely matched with the flexibility of the human skin, and shows the possibility for integrating PVDF/PDMS composites into wearable devices and implantable medical devices. The $300{\mu}m$ thick composite has a 14% volume fraction of PVDF fibers and produces high piezoelectricity with piezoelectric charge constants $d_{31}=19pC/N$ and $d_{33}=34pC/N$, and piezoelectric voltage constants $g_{31}=33.9mV/N$ and $g_{33}=61.2mV/N$. Under a 10 Hz actuation, the output voltage was measured at 190 mVpp, which is the largest output signal generated from a PVDF fiber-based prototype.

A Novel Spiking Neural Network for ECG signal Classification

  • Rana, Amrita;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.20-24
    • /
    • 2021
  • The electrocardiogram (ECG) is one of the most extensively employed signals used to diagnose and predict cardiovascular diseases (CVDs). In recent years, several deep learning (DL) models have been proposed to improve detection accuracy. Among these, deep neural networks (DNNs) are the most popular, wherein the features are extracted automatically. Despite the increment in classification accuracy, DL models require exorbitant computational resources and power. This causes the mapping of DNNs to be slow; in addition, the mapping is challenging for a wearable device. Embedded systems have constrained power and memory resources. Therefore full-precision DNNs are not easily deployable on devices. To make the neural network faster and more power-efficient, spiking neural networks (SNNs) have been introduced for fewer operations and less complex hardware resources. However, the conventional SNN has low accuracy and high computational cost. Therefore, this paper proposes a new binarized SNN which modifies the synaptic weights of SNN constraining it to be binary (+1 and -1). In the simulation results, this paper compares the DL models and SNNs and evaluates which model is optimal for ECG classification. Although there is a slight compromise in accuracy, the latter proves to be energy-efficient.

Solution-Processed Two-Dimensional Materials for Scalable Production of Photodetector Arrays

  • Rhee, Dongjoon;Kim, Jihyun;Kang, Joohoon
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.228-237
    • /
    • 2022
  • Two-dimensional (2D) nanomaterials have demonstrated the potential to replace silicon and compound semiconductors that are conventionally used in photodetectors. These materials are ultrathin and have superior electrical and optoelectronic properties as well as mechanical flexibility. Consequently, they are particularly advantageous for fabricating high-performance photodetectors that can be used for wearable device applications and Internet of Things technology. Although prototype photodetectors based on single microflakes of 2D materials have demonstrated excellent photoresponsivity across the entire optical spectrum, their practical applications are limited due to the difficulties in scaling up the synthesis process while maintaining the optoelectronic performance. In this review, we discuss facile methods to mass-produce 2D material-based photodetectors based on the exfoliation of van der Waals crystals into nanosheet dispersions. We first introduce the liquid-phase exfoliation process, which has been widely investigated for the scalable fabrication of photodetectors. Solution processing techniques to assemble 2D nanosheets into thin films and the optoelectronic performance of the fabricated devices are also presented. We conclude by discussing the limitations associated with liquid-phase exfoliation and the recent advances made due to the development of the electrochemical exfoliation process with molecular intercalants.

Types and Esthetic Characteristics by Function in Portable Smart Fashion Design (휴대형 스마트 패션 디자인의 기능에 따른 유형 및 심미적 특성)

  • Si Eun Lim;Heeyoung Ju
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.1
    • /
    • pp.1-16
    • /
    • 2023
  • The smart fashion industry is showing steady growth worldwide, which will create new value throughout the fashion industry and become an essential element for efficient lifestyles. This study attempted to examine the development trend of smart fashion products from a design perspective and present the direction of design as a fashion item incorporating smart technology from a functional perspective. For this purpose, the category of portable smart fashion and the characteristics of the research object were considered through current status survey and previous research review. Among smart fashion, accessories and clothing/fabric products that have been released thus far that apply portable fashion design principles are selected and its characteristics are analyzed. In addition, function keywords were extracted based on the product description provided by the manufacturer and the function-oriented types were classified to identify each type's design characteristics. Therefore, the area receiving the signal and the sensor size should be considered, as should the fashion accessory type that combines various materials and colors. The clothing/textile type requires a design that mainly focuses on functions related to bio-signal interactions.

Engineered Stretchability of Conformal Parylene Thin-film On-skin Electronics

  • Jungho Lee;Gaeun Yun;Juhyeong Jeon;Phuong Thao Le;Seung Whan Kim;Geunbae Lim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.335-339
    • /
    • 2023
  • Skin-compatible electronics have evolved to achieve both conformality and stretchability for stable contact with deformable biological skin. While existing research has largely concentrated on alternative materials, the potential of Parylene-based thin-film electrodes for stretchable on-skin applications remains relatively untapped. This study proposes an engineering strategy to achieve stretchability using the Parylene thin-film electrode. Unlike the conventional Parylene thin-film electrode, we introduce morphological adaptability via controlled microscale slits in the Parylene electrode structure. The slits-containing device enables unprecedented stretchability while maintaining critical electrical insulation properties during mechanical deformation. Finally, the demonstration on human skin shows the mechanical adaptability of these Parylene-based bioelectrodes while their electrical characteristics remain stable during various stretching conditions. Owing to the ultra-thinness of the Parylene coating, the wearable bioelectrode not only achieves stretchability but also conforms to the skin. Our findings broaden the practical use of Parylene thin-film bioelectrodes.